112 research outputs found

    Forest adaptation to Climate Change along steep ecological gradients: the case of the mediterranean-temperate transition in South-Western Europe

    Get PDF
    18 p.Impacts of climate change are likely to be marked in areas with steep climatic transitions. Species turnover, spread of invasive species, altered productivity, and modified processes such as fire regimes can all spread rapidly along ecotones, which challenge the current paradigms of ecosystem management. We conducted a literature review at a continental-wide scale of South-Western European forests, where the drier and warmer conditions of the Mediterranean have been widely used as examples of what is expected in more temperate areas. Results from the literature point to: (a) an expansion of slow-growing evergreen hardwood trees; (b) increased dieback and mortality episodes in forests (both natural and planted) mostly related to competition and droughts, and mainly affecting conifers; and (c) an increase in emergent diseases and pests of keystone-trees used in agroforestry zones. There is no consensus in the literature that fire regimes are directly increasing due to climate change, but available satellite data of fire intensity in the last 17 years has been lower in zones where agroforestry practices are dominant compared to unmanaged forests. In contrast, there is agreement in the literature that the current spread of fire events is probably related to land abandonment patterns. The practice of agroforestry, common in all Mediterranean countries, emerges as a frequent recommendation in the literature to cope with drought, reduce fire risk, and maintain biodiverse landscapes and rural jobs. However, it is unknown the extent to which the open vegetation resulting from agroforestry is of interest to forest managers in temperate areas used to exploiting closed forest vegetation. Hence, many transitional areas surrounding the Mediterranean Basin may be left unmanaged with potentially higher climate-change risks, which require active monitoring in order to understand and help ongoing natural adaptation processes.LabEx-BASCMinisterio de EconomíaComunidad de MadridFundación Española para la Ciencia y la Tecnología (FECYT

    Using ecosystem services modelling to explore conflict mitigation in the coastal zone

    Get PDF
    Integrated coastal zone management is an emerging governance practice which aims at combining environmental preservation, economic development and social concerns in the context of complex ecosystem dynamics and increasing anthropogenic pressures. Coastal managers need socio-environmental integrated models in order to investigate the consequences of policy options which apply to different sectors simultaneously and pursue multiple objectives. The ecosystem services concept is equivalent for natural and social sciences; it offers a framework for a better understanding of users’ conflicts regarding natural resources and the environment. This paper presents a model-based assessment of the ecosystem services supplied by freshwater in the coastal zone, under various local management options. The model is built through a participatory experiment which has been carried out in a coastal area of the Atlantic side of France, called “Pertuis Charentais”, according to the methodology developed by the European project SPICOSA (Science and Policy Integration for Coastal System Assessment). The modelled socio-ecosystem is centred on the Charente river catchment. The stakeholders chose the allocation of freshwater as the core issue for integrated coastal zone management. They considered that freshwater provides mainly “support services” for natural habitats and shellfish farming and “provisioning services” for households and agriculture. The model is intended to produce a wide range of indicators for the integrated assessment of these ecosystem services. The model is used to support the deliberative process engaged with local managers in order to explore new rules for water allocation, their consequences on ecosystem services and their meanings in terms of conflict mitigation. For that purpose, the model will also allow for an economic assessment based on two methods (productivity losses and remediation costs)

    Protection and consolidation of stone heritage by self-inoculation with indigenous carbonatogenic bacterial communities

    Get PDF
    Enhanced salt weathering resulting from global warming and increasing environmental pollution is endangering the survival of stone monuments and artworks. To mitigate the effects of these deleterious processes, numerous conservation treatments have been applied that, however, show limited efficacy. Here we present a novel, environmentally friendly, bacterial self-inoculation approach for the conservation of stone, based on the isolation of an indigenous community of carbonatogenic bacteria from salt damaged stone, followed by their culture and re-application back onto the same stone. This method results in an effective consolidation and protection due to the formation of an abundant and exceptionally strong hybrid cement consisting of nanostructured bacterial CaCO3 and bacterially derived organics, and the passivating effect of bacterial exopolymeric substances (EPS) covering the substrate. The fact that the isolated and identified bacterial community is common to many stone artworks may enable worldwide application of this novel conservation methodology.This work was supported by the Spanish Government (Grants MAT2012-37584, CGL2012-35992 and CGL2015-70642-R), the Junta de Andalucía through Proyecto de excelencia RNM-3493 and Project P11-RNM-7550, the Research Groups BIO 103 and RNM-179, and the University of Granada (Unidad Científica de Excelencia UCE-PP2016-05). Additional funds were provided by the Molecular Foundry (Lawrence Berkeley National Laboratory, LBNL, University of California, Berkeley, CA) for a research stay of M.S. (project #1451; User Agreement No. NPUSR009206)

    Molecular Tools for Monitoring the Ecological Sustainability of a Stone Bio-Consolidation Treatment at the Royal Chapel, Granada

    Get PDF
    Background: Biomineralization processes have recently been applied in situ to protect and consolidate decayed ornamental stone of the Royal Chapel in Granada (Spain). While this promising method has demonstrated its efficacy regarding strengthening of the stone, little is known about its ecological sustainability.Methodology/Principal Findings: Here, we report molecular monitoring of the stone-autochthonous microbiota before and at 5, 12 and 30 months after the bio-consolidation treatment (medium/long-term monitoring), employing the well-known molecular strategy of DGGE analyses. Before the bio-consolidation treatment, the bacterial diversity showed the exclusive dominance of Actinobacteria (100%), which decreased in the community (44.2%) after 5 months, and Gamma-proteobacteria (30.24%) and Chloroflexi (25.56%) appeared. After 12 months, Gamma-proteobacteria vanished from the community and Cyanobacteria (22.1%) appeared and remained dominant after thirty months, when the microbiota consisted of Actinobacteria (42.2%) and Cyanobacteria (57.8%) only. Fungal diversity showed that the Ascomycota phylum was dominant before treatment (100%), while, after five months, Basidiomycota (6.38%) appeared on the stone, and vanished again after twelve months. Thirty months after the treatment, the fungal population started to stabilize and Ascomycota dominated on the stone (83.33%) once again. Members of green algae (Chlorophyta, Viridiplantae) appeared on the stone at 5, 12 and 30 months after the treatment and accounted for 4.25%, 84.77% and 16.77%, respectively.Conclusions: The results clearly show that, although a temporary shift in the bacterial and fungal diversity was observed during the first five months, most probably promoted by the application of the bio-consolidation treatment, the microbiota tends to regain its initial stability in a few months. Thus, the treatment does not seem to have any negative side effects on the stone-autochthonous microbiota over that time. The molecular strategy employed here is suggested as an efficient monitoring tool to assess the impact on the stone-autochthonous microbiota of the application of biomineralization processes as a restoration/conservation procedure.This work was supported by the European Regional Development Fund (ERDF), Junta de Andalucía (Spain) and the “Fortalecimiento de la I+D+i” program from the University of Granada, co-financed by grant RNM-3493 and Research Group BIO-103 from Junta de Andalucía, as well as by the Spanish Government through “José Castillejo” program from the “Ministerio de Educación, Cultura y Deporte” (I+D+i 2008-2011), and by the Austrian Science Fund (FWF) under Grant “Elise-Richter V194-B20”

    The many meanings of No Net Loss in environmental policy

    Get PDF
    ‘No net loss’ is a buzz phrase in environmental policy. Applied to a multitude of environmental targets such as biodiversity, wetlands and land productive capacity, no net loss (NNL) and related goals have been adopted by multiple countries and organizations, but these goals often lack clear reference scenarios: no net loss compared to what? Here, we examine policies with NNL and related goals, and identify three main forms of reference scenario. We categorize NNL policies as relating either to overarching policy goals, or to responses to specific impacts. We explore how to resolve conflicts between overarching and impact-specific NNL policies, and improve transparency about what NNL-type policies are actually designed to achieve

    The global extent of biodiversity offset implementation under no net loss policies

    Get PDF
    ‘No net loss’ (NNL) biodiversity policies, which seek to neutralize ongoing biodiversity losses caused by economic development activities, are applicable worldwide. Yet there has been no global assessment concerning practical measures actually implemented under NNL policies. Here, we systematically map the global implementation of biodiversity offsets (‘offsets’) – a crucial yet controversial NNL practice. We find, firstly, that offsets occupy an area up to two orders of magnitude larger than previously suggested: 12,983 offset projects extending over ?153,679?_(-64,223)^(+25,013) km2 across 37 countries. Secondly, offsets are far from homogeneous in implementation, and emerging economies (particularly in South America) are more dominant in terms of global offsetting area than expected. Thirdly, most offset projects are very small, and the overwhelming majority (99.7%) arise through regulatory requirements rather than prominent project finance safeguards. Our database provides a sampling frame via which future studies could evaluate the efficacy of NNL policies

    Les services écosystemiques

    No full text

    Épigraphe

    No full text
    International audienceno abstrac

    Remerciements

    No full text
    International audienceno abstrac
    corecore