778 research outputs found
Efficient Benchmarking of Algorithm Configuration Procedures via Model-Based Surrogates
The optimization of algorithm (hyper-)parameters is crucial for achieving
peak performance across a wide range of domains, ranging from deep neural
networks to solvers for hard combinatorial problems. The resulting algorithm
configuration (AC) problem has attracted much attention from the machine
learning community. However, the proper evaluation of new AC procedures is
hindered by two key hurdles. First, AC benchmarks are hard to set up. Second
and even more significantly, they are computationally expensive: a single run
of an AC procedure involves many costly runs of the target algorithm whose
performance is to be optimized in a given AC benchmark scenario. One common
workaround is to optimize cheap-to-evaluate artificial benchmark functions
(e.g., Branin) instead of actual algorithms; however, these have different
properties than realistic AC problems. Here, we propose an alternative
benchmarking approach that is similarly cheap to evaluate but much closer to
the original AC problem: replacing expensive benchmarks by surrogate benchmarks
constructed from AC benchmarks. These surrogate benchmarks approximate the
response surface corresponding to true target algorithm performance using a
regression model, and the original and surrogate benchmark share the same
(hyper-)parameter space. In our experiments, we construct and evaluate
surrogate benchmarks for hyperparameter optimization as well as for AC problems
that involve performance optimization of solvers for hard combinatorial
problems, drawing training data from the runs of existing AC procedures. We
show that our surrogate benchmarks capture overall important characteristics of
the AC scenarios, such as high- and low-performing regions, from which they
were derived, while being much easier to use and orders of magnitude cheaper to
evaluate
Preface
AimThis was a one-year follow-up of families referred to support services after the parents visited the emergency department due to intimate partner violence, substance abuse or a suicide attempt. Its aim was to evaluate the well-being of any children. MethodsData on families identified a year earlier by the Amsterdam protocol were gathered from child protective services and parent and child self-reports in two Dutch regions from 2012-2015. ResultsWe included 399 children (52%) boys with a median age of eight years (range 1-18) in the study using child protective services data. Of the 101 families who participated in the first measurement, 67 responded one year after the parent's emergency department visit. The results showed that 20% of the children had no or minor problems, voluntary support services were involved in 60% of cases and child protective services were involved in 20%. Compared to their first assessment a year earlier, the children's psychosocial problems had not increased, but this could have been an underestimation due to selective responses. ConclusionThe Amsterdam protocol was valuable in referring families to voluntary support services, but given the ongoing problems in some families, professionals need to carefully monitor whether support services are sufficiently effectiv
Honey bee foraging distance depends on month and forage type
To investigate the distances at which honey bee foragers collect nectar and pollen, we analysed 5,484 decoded waggle dances made to natural forage sites to determine monthly foraging distance for each forage type. Firstly, we found significantly fewer overall dances made for pollen (16.8 %) than for non-pollen, presumably nectar (83.2 %; P < 2.2 × 10−23). When we analysed distance against month and forage type, there was a significant interaction between the two factors, which demonstrates that in some months, one forage type is collected at farther distances, but this would reverse in other months. Overall, these data suggest that distance, as a proxy for forage availability, is not significantly and consistently driven by need for one type of forage over the other
Analysis of chloroplast genomes and a supermatrix inform reclassification of the Rhodomelaceae (Rhodophyta).
With over a thousand species, the Rhodomelaceae is the most species-rich family of red algae. While its genera have been assigned to 14 tribes, the high-level classification of the family has never been evaluated with a molecular phylogeny. Here, we reassess its classification by integrating genome-scale phylogenetic analysis with observations of the morphological characters of clades. In order to resolve relationships among the main lineages of the family we constructed a phylogeny with 55 chloroplast genomes (52 newly determined). The majority of branches were resolved with full bootstrap support. We then added 266 rbcL, 125 18S rRNA gene and 143 cox1 sequences to construct a comprehensive phylogeny containing nearly half of all known species in the family (407 species in 89 genera). These analyses suggest the same subdivision into higher-level lineages, but included many branches with moderate or poor support. The circumscription for nine of the 13 previously described tribes was supported, but the Lophothalieae, Polysiphonieae, Pterosiphonieae and Herposiphonieae required revision, and five new tribes and one resurrected tribe were segregated from them. Rhizoid anatomy is highlighted as a key diagnostic character for the morphological delineation of several lineages. This work provides the most extensive phylogenetic analysis of the Rhodomelaceae to date and successfully resolves the relationships among major clades of the family. Our data show that organellar genomes obtained through high-throughput sequencing produce well-resolved phylogenies of difficult groups, and their more general application in algal systematics will likely permit deciphering questions about classification at many taxonomic levels
Analysis of chloroplast genomes and a supermatrix inform reclassification of the Rhodomelaceae (Rhodophyta).
With over a thousand species, the Rhodomelaceae is the most species-rich family of red algae. While its genera have been assigned to 14 tribes, the high-level classification of the family has never been evaluated with a molecular phylogeny. Here, we reassess its classification by integrating genome-scale phylogenetic analysis with observations of the morphological characters of clades. In order to resolve relationships among the main lineages of the family we constructed a phylogeny with 55 chloroplast genomes (52 newly determined). The majority of branches were resolved with full bootstrap support. We then added 266 rbcL, 125 18S rRNA gene and 143 cox1 sequences to construct a comprehensive phylogeny containing nearly half of all known species in the family (407 species in 89 genera). These analyses suggest the same subdivision into higher-level lineages, but included many branches with moderate or poor support. The circumscription for nine of the 13 previously described tribes was supported, but the Lophothalieae, Polysiphonieae, Pterosiphonieae and Herposiphonieae required revision, and five new tribes and one resurrected tribe were segregated from them. Rhizoid anatomy is highlighted as a key diagnostic character for the morphological delineation of several lineages. This work provides the most extensive phylogenetic analysis of the Rhodomelaceae to date and successfully resolves the relationships among major clades of the family. Our data show that organellar genomes obtained through high-throughput sequencing produce well-resolved phylogenies of difficult groups, and their more general application in algal systematics will likely permit deciphering questions about classification at many taxonomic levels
Multidimensional treatment foster care for preschoolers: early findings of an implementation in the Netherlands
Multidimensional Treatment Foster Care (MTFC) has been shown to be an evidence based alternative to residential rearing and an effective method to improve behavior and attachment of preschool foster children in the US. This preliminary study investigated an application of MTFC for preschoolers (MTFC-P) in the Netherlands focusing on behavioral outcomes in course of the intervention. To examine the following hypothesis: “the time in the MTFC-P intervention predicts a decline in problem behavior, as this is the desired outcome for children assigned to MTFC-P”, we assessed the daily occurrence of 38 problem behaviors via telephone interviews. Repeated measures revealed significant reduced problem behavior in course of the program. MTFC-P promises to be a treatment model suitable for high-risk foster children, that is transferable across centres and countries
Evolutionism and genetics of posttraumatic stress disorder
The authors discuss, from the evolutionary concept, how flight and fight responses and tonic immobility can lead to a new understanding of posttraumatic stress disorder. Through the analysis of symptom clusters (revivals, avoidance and hyperexcitation), neurobiological and evolutionary findings are correlated. The current discoveries on posttraumatic stress disorder genetics are summarized and analyzed in this evolutionary perspective, using concepts to understand the gene-environment interaction, such as epigenetic. The proposal is that the research of susceptibility factors in posttraumatic stress disorder must be investigated from the factorial point of view, where their interactions increase the risk of developing the disorder, preventing a unique search of the cause of this disorder. The research of candidate genes in posttraumatic stress disorder must take into consideration all the systems associated with processes of stress response, such as the hypothalamus-pituitary-adrenal and sympathetic axes, mechanisms of learning, formation and extinguishing of declarative memories, neurogenesis and apoptosis, which involve many systems of neurotransmitters, neuropeptides and neurohormones.Os autores discutem, a partir do conceito evolutivo, como a resposta de estresse, nas suas possibilidades de fuga e luta e de imobilidade tônica, pode levar a uma nova compreensão etiológica do transtorno de estresse pós-traumático. Através da análise dos agrupamentos de sintomas desse diagnóstico - revivência, evitação e hiperexcitação -, procuram correlacionar os achados neurobiológicos e evolutivos. As descobertas atuais sobre a genética do transtorno de estresse pós-traumático são resumidas e colocadas nessa perspectiva evolutiva, dentro de conceitos que possibilitam o entendimento da interação gene/ambiente, como a epigenética. Propõem que a pesquisa dos fatores de risco do transtorno de estresse pós-traumático deva ser investigada do ponto de vista fatorial, onde a somatória destes aumenta o risco de desenvolvimento do quadro, não sendo possível a procura da causa do transtorno de forma única. A pesquisa de genes candidatos no transtorno de estresse pós-traumático deve levar em consideração todos os sistemas associados aos processos de respostas ao estresse, sistemas dos eixos hipotálamo-hipofisário-adrenal e simpático, mecanismos de aprendizado, formação de memórias declarativas, de extinção e esquecimento, da neurogênese e da apoptose, que envolvem vários sistemas de neurotransmissores, neuropeptídeos e neuro-hormônios.Universidade Federal de São Paulo (UNIFESP)(UNIFESP)UNIFESP Departamento de PsiquiatriaUniversidade de São Paulo Faculdade de Medicin Hospital de ClínicasUNIFESP, Depto. de PsiquiatriaSciEL
Psychologie der Kreativität
Ein kleiner Streifzug durch die psychologische Kreativitätsforschung befasst sich mit den Möglichkeiten der Erfassung kreativer Prozesse, ihrer Manifestation, den Determinanten, der Frage nach der Notwendigkeit zu kreativem Denken und schließlich Erkenntnissen darüber, wie kreatives Denken gefördert werden kann
Bestrophin Gene Mutations Cause Canine Multifocal Retinopathy: A Novel Animal Model for Best Disease
PURPOSE. Canine multifocal retinopathy (cmr) is an autosomal recessive disorder of multiple dog breeds. The disease shares a number of clinical and pathologic similarities with Best macular dystrophy (BMD), and cmr is proposed as a new large animal model for Best disease. METHODS. cmr was characterized by ophthalmoscopy and histopathology and compared with BMD-affected patients. BEST1 (alias VMD2), the bestrophin gene causally associated with BMD, was evaluated in the dog. Canine ortholog cDNA sequence was cloned and verified using RPE/choroid 5′- and 3′-RACE. Expression of the canine gene transcripts and protein was analyzed by Northern and Western blotting and immunocytochemistry. All exons and the flanking splice junctions were screened by direct sequencing. RESULTS. The clinical phenotype and pathology of cmr closely resemble lesions of BMD. Canine VMD2 spans 13.7 kb of genomic DNA on CFA18 and shows a high level of conservation among eukaryotes. The transcript is predominantly expressed in RPE/choroid and encodes bestrophin, a 580-amino acid protein of 66 kDa. Immunocytochemistry of normal canine retina demonstrated specific localization of protein to the RPE basolateral plasma membranes. Two disease-specific sequence alterations were identified in the canine VMD2 gene: a C73T stop mutation in cmr1 and a G482A missense mutation in cmr2. CONCLUSIONS. The authors propose these two spontaneous mutations in the canine VMD2 gene, which cause cmr, as the first naturally occurring animal model of BMD. Further development of the cmr models will permit elucidation of the complex molecular mechanism of these retinopathies and the development of potential therapies
- …
