4,424 research outputs found
Free energies, vacancy concentrations and density distribution anisotropies in hard--sphere crystals: A combined density functional and simulation study
We perform a comparative study of the free energies and the density
distributions in hard sphere crystals using Monte Carlo simulations and density
functional theory (employing Fundamental Measure functionals). Using a recently
introduced technique (Schilling and Schmid, J. Chem. Phys 131, 231102 (2009))
we obtain crystal free energies to a high precision. The free energies from
Fundamental Measure theory are in good agreement with the simulation results
and demonstrate the applicability of these functionals to the treatment of
other problems involving crystallization. The agreement between FMT and
simulations on the level of the free energies is also reflected in the density
distributions around single lattice sites. Overall, the peak widths and
anisotropy signs for different lattice directions agree, however, it is found
that Fundamental Measure theory gives slightly narrower peaks with more
anisotropy than seen in the simulations. Among the three types of Fundamental
Measure functionals studied, only the White Bear II functional (Hansen-Goos and
Roth, J. Phys.: Condens. Matter 18, 8413 (2006)) exhibits sensible results for
the equilibrium vacancy concentration and a physical behavior of the chemical
potential in crystals constrained by a fixed vacancy concentration.Comment: 17 pages, submitted to Phys. Rev.
Fragility and compressibility at the glass transition
Isothermal compressibilities and Brillouin sound velocities from the
literature allow to separate the compressibility at the glass transition into a
high-frequency vibrational and a low-frequency relaxational part. Their ratio
shows the linear fragility relation discovered by x-ray Brillouin scattering
[1], though the data bend away from the line at higher fragilities. Using the
concept of constrained degrees of freedom, one can show that the vibrational
part follows the fragility-independent Lindemann criterion; the fragility
dependence seems to stem from the relaxational part. The physical meaning of
this finding is discussed. [1] T. Scopigno, G. Ruocco, F. Sette and G. Monaco,
Science 302, 849 (2003)Comment: 4 pages, 2 figures, 2 tables, 33 references. Slightly changed after
refereein
Potts-Percolation-Gauss Model of a Solid
We study a statistical mechanics model of a solid. Neighboring atoms are
connected by Hookian springs. If the energy is larger than a threshold the
"spring" is more likely to fail, while if the energy is lower than the
threshold the spring is more likely to be alive. The phase diagram and
thermodynamic quantities, such as free energy, numbers of bonds and clusters,
and their fluctuations, are determined using renormalization-group and
Monte-Carlo techniques.Comment: 10 pages, 12 figure
Many-body interactions and melting of colloidal crystals
We study the melting behavior of charged colloidal crystals, using a
simulation technique that combines a continuous mean-field Poisson-Boltzmann
description for the microscopic electrolyte ions with a Brownian-dynamics
simulation for the mesoscopic colloids. This technique ensures that many-body
interactions between the colloids are fully taken into account, and thus allows
us to investigate how many-body interactions affect the solid-liquid phase
behavior of charged colloids. Using the Lindemann criterion, we determine the
melting line in a phase-diagram spanned by the colloidal charge and the salt
concentration. We compare our results to predictions based on the established
description of colloidal suspensions in terms of pairwise additive Yukawa
potentials, and find good agreement at high-salt, but not at low-salt
concentration. Analyzing the effective pair-interaction between two colloids in
a crystalline environment, we demonstrate that the difference in the melting
behavior observed at low salt is due to many-body interactions
Design and validation of a partial-genome microarray for transcriptional profiling of the Bradyrhizobium japonicum symbiotic gene region
The design and use of a pilot microarray for transcriptome analysis of the symbiotic, nitrogen-fixing Bradyrhizobium japonicum is reported here. The custom-synthesized chip (Affymetrix GeneChip®) features 738 genes, more than half of which belong to a 400-kb chromosomal segment strongly associated with symbiosis-related functions. RNA was isolated following an optimized protocol from wild-type cells grown aerobically and microaerobically, and from cells of aerobically grown regR mutant and microaerobically grown nifA mutant. Comparative microarray analyses thus revealed genes that are transcribed in either a RegR- or a NifA-dependent manner plus genes whose expression depends on the cellular oxygen status. Several genes were newly identified as members of the RegR and NifA regulons, beyond genes, which had been known from previous work. A comprehensive transcription analysis was performed with one of the new RegR-controlled genes (id880). Expression levels determined by microarray analysis of selected NifA- and RegR-controlled genes corresponded well with quantitative real-time PCR data, demonstrating the high complementarity of microarray analysis to classical methods of gene expression analysis in B. japonicum. Nevertheless, several previously established members of the NifA regulon were not detected as transcribed genes by microarray analysis, confirming the potential pitfalls of this approach also observed by other authors. By and large, this pilot study has paved the way towards the genome-wide transcriptome analysis of the 9.1-Mb B. japonicum genom
Effect of a thin AlO_x layer on transition-edge sensor properties
We have studied the physics of transition-edge sensor (TES) devices with an
insulating AlOx layer on top of the device to allow implementation of more
complex detector geometries. By comparing devices with and without the
insulating film, we have observed significant additional noise apparently
caused by the insulator layer. In addition, AlOx was found to be a relatively
good thermal conductor. This adds an unforeseen internal thermal feature to the
system.Comment: 6 pages, 5 figures, Low Temperature Detectors 14 conferenc
Grain Size seperation and sediment mixing in Artic Ocean sediments: evidence from the strontium isotope systematic
The (87)Rb/(86)Sr and (87)Sr/(86)Sr ratios of Laptev Sea sediments, of Arctic Ocean sediments and of suspended particulate matter (SPM) from Siberian rivers (Lena and Khatanga) form 'pseudo-isochrons' due to grain-size separation processes which are referred to as 'Lena Mixing Envelope' (LME) and as 'Flood Basalt Envelope' (FBE). At the land-ocean transition the reduction of the particle velocity causes a deposition of coarser grained material and the contact with saline water enhances a precipitation of finer-grained material. The coarse-grained material is enriched in Sr showing less radiogenic (87)Sr/(86)Sr ratios whereas fine grained material is depleted in Sr relative to Rb showing more radiogenic (87)Sr/(86)Sr ratios, The experimentally determined spread of the (87)Rb/(86)Sr and (87)Sr/(86)Sr ratios as a function of grain size in one sediment sample is on the same order as the natural spread of the (87)Sr/(86)Sr ratios observed in all samples from the Arctic Ocean. Chemical Index of Alteration (CIA) for the Lena river SPM tend to confirm previous observations that chemical alteration is negligible in the Arctic environment. Thus, these 'pseudo-isochrons' reflect an average age and the average isotope composition in the river drainage area. Calculated apparent ages from the FBE reflect the age of the Siberian flood basalt of about 220 Ma and the initial ratio of 0.707(1) reflects their mantle origin. The age calculated from the LME of about 125 Ma reflects accidentally the Jurassic and Cretaceous age of the sediments drained by the Lena river and the initial ratio of 0.714(1) reflects the crustal origin of their source rocks. Comparison of geographical locations reveals that all samples from the eastern Laptev Sea (east of 120 degrees E) fall along the LME whereas all samples from the western Laptev Sea (west of 120 degrees E) fall between LME and FBE. Mixing calculations based on (143)Nd/(144)Nd measurements, not influenced by grain size, show that about 75% of the western Laptev Sea sediments originate from the Lena drainage area whereas about 25% of the sediments are delivered from the Siberian flood basalt province. Sediments from the central Arctic Ocean are isotopically related to the Lena drainage area and the Siberian flood basalt province. However, sediments from the Arctic Ocean margins close to Novaya Semlya, Greenland, the Fram Strait and Svalbard originate from sources not yet identified. (C) 1999 Elsevier Science B.V. All rights reserved
Instability of insulating states in optical lattices due to collective phonon excitations
The role of collective phonon excitations on the properties of cold atoms in
optical lattices is investigated. These phonon excitations are collective
excitations, whose appearance is caused by intersite atomic interactions
correlating the atoms, and they do not arise without such interactions. These
collective excitations should not be confused with lattice vibrations produced
by an external force. No such a force is assumed. But the considered phonons
are purely self-organized collective excitations, characterizing atomic
oscillations around lattice sites, due to intersite atomic interactions. It is
shown that these excitations can essentially influence the possibility of atoms
to be localized. The states that would be insulating in the absence of phonon
excitations can become delocalized when these excitations are taken into
account. This concerns long-range as well as local atomic interactions. To
characterize the region of stability, the Lindemann criterion is used.Comment: Latex file, 27 pages, 1 figur
Self-organized Beating and Swimming of Internally Driven Filaments
We study a simple two-dimensional model for motion of an elastic filament
subject to internally generated stresses and show that wave-like propagating
shapes which can propel the filament can be induced by a self-organized
mechanism via a dynamic instability. The resulting patterns of motion do not
depend on the microscopic mechanism of the instability but only of the filament
rigidity and hydrodynamic friction. Our results suggest that simplified
systems, consisting only of molecular motors and filaments could be able to
show beating motion and self-propulsion.Comment: 8 pages, 2 figures, REVTe
Immersed nano-sized Al dispersoids in an Al matrix; effects on the structural and mechanical properties by Molecular Dynamics simulations
We used molecular dynamics simulations based on a potential model in analogy
to the Tight Binding scheme in the Second Moment Approximation to simulate the
effects of aluminum icosahedral grains (dispersoids) on the structure and the
mechanical properties of an aluminum matrix. First we validated our model by
calculating several thermodynamic properties referring to the bulk Al case and
we found good agreement with available experimental and theoretical data.
Afterwards, we simulated Al systems containing Al clusters of various sizes. We
found that the structure of the Al matrix is affected by the presence of the
dispersoids resulting in well ordered domains of different symmetries that were
identified using suitable Voronoi analysis. In addition, we found that the
increase of the grain size has negative effect on the mechanical properties of
the nanocomposite as manifested by the lowering of the calculated bulk moduli.
The obtained results are in line with available experimental data.Comment: 15 pages, 8 figures. Submitted to J. Phys: Condens. Matte
- …
