3,789 research outputs found
Puromycin Sensitivity of Ribosomal Label after Incorporation of 14C-Labelled Amino Acids into Isolated Mitochondria from Neurospora crassa
Radioactive amino acids were incorporated into isolated mitochondria from Neurospora crassa. Then the mitochondrial ribosomes were isolated and submitted to density gradient centrifugation. A preferential labelling of polysomes was observed. However, when the mitochondrial suspension was treated with puromycin after amino acid incorporation, no radioactivity could be detected in either the monosomes or the polysomes. The conclusion is drawn that isolated mitochondria under these conditions do not incorporate significant amounts of amino acids into proteins of their ribosomes
Competition and cooperation:aspects of dynamics in sandpiles
In this article, we review some of our approaches to granular dynamics, now
well known to consist of both fast and slow relaxational processes. In the
first case, grains typically compete with each other, while in the second, they
cooperate. A typical result of {\it cooperation} is the formation of stable
bridges, signatures of spatiotemporal inhomogeneities; we review their
geometrical characteristics and compare theoretical results with those of
independent simulations. {\it Cooperative} excitations due to local density
fluctuations are also responsible for relaxation at the angle of repose; the
{\it competition} between these fluctuations and external driving forces, can,
on the other hand, result in a (rare) collapse of the sandpile to the
horizontal. Both these features are present in a theory reviewed here. An arena
where the effects of cooperation versus competition are felt most keenly is
granular compaction; we review here a random graph model, where three-spin
interactions are used to model compaction under tapping. The compaction curve
shows distinct regions where 'fast' and 'slow' dynamics apply, separated by
what we have called the {\it single-particle relaxation threshold}. In the
final section of this paper, we explore the effect of shape -- jagged vs.
regular -- on the compaction of packings near their jamming limit. One of our
major results is an entropic landscape that, while microscopically rough,
manifests {\it Edwards' flatness} at a macroscopic level. Another major result
is that of surface intermittency under low-intensity shaking.Comment: 36 pages, 23 figures, minor correction
Absence of skew scattering in two-dimensional systems: Testing the origins of the anomalous Hall effect
We study the anomalous Hall conductivity in spin-polarized, asymmetrically
confined two-dimensional electron and hole systems, focusing on skew-scattering
contributions to the transport. We find that the skew scattering, principally
responsible for the extrinsic contribution to the anomalous Hall effect,
vanishes for the two-dimensional electron system if both chiral Rashba subbands
are partially occupied, and vanishes always for the two-dimensional hole gas
studied here, regardless of the band filling. Our prediction can be tested with
the proposed coplanar two-dimensional electron/hole gas device and can be used
as a benchmark to understand the crossover from the intrisic to the extrinsic
anomalous Hall effect.Comment: 4 pages, 2 figures include
Anomalous thermal conductivity and local temperature distribution on harmonic Fibonacci chains
The harmonic Fibonacci chain, which is one of a quasiperiodic chain
constructed with a recursion relation, has a singular continuous
frequency-spectrum and critical eigenstates. The validity of the Fourier law is
examined for the harmonic Fibonacci chain with stochastic heat baths at both
ends by investigating the system size N dependence of the heat current J and
the local temperature distribution. It is shown that J asymptotically behaves
as (ln N)^{-1} and the local temperature strongly oscillates along the chain.
These results indicate that the Fourier law does not hold on the harmonic
Fibonacci chain. Furthermore the local temperature exhibits two different
distribution according to the generation of the Fibonacci chain, i.e., the
local temperature distribution does not have a definite form in the
thermodynamic limit. The relations between N-dependence of J and the
frequency-spectrum, and between the local temperature and critical eigenstates
are discussed.Comment: 10 pages, 4 figures, submitted to J. Phys.: Cond. Ma
Growth and Structure of Stochastic Sequences
We introduce a class of stochastic integer sequences. In these sequences,
every element is a sum of two previous elements, at least one of which is
chosen randomly. The interplay between randomness and memory underlying these
sequences leads to a wide variety of behaviors ranging from stretched
exponential to log-normal to algebraic growth. Interestingly, the set of all
possible sequence values has an intricate structure.Comment: 4 pages, 4 figure
Aperiodic Ising Quantum Chains
Some years ago, Luck proposed a relevance criterion for the effect of
aperiodic disorder on the critical behaviour of ferromagnetic Ising systems. In
this article, we show how Luck's criterion can be derived within an exact
renormalisation scheme for Ising quantum chains with coupling constants
modulated according to substitution rules. Luck's conjectures for this case are
confirmed and refined. Among other outcomes, we give an exact formula for the
correlation length critical exponent for arbitrary two-letter substitution
sequences with marginal fluctuations of the coupling constants.Comment: 27 pages, LaTeX, 1 Postscript figure included, using epsf.sty and
amssymb.sty (one error corrected, some minor changes
Surface Properties of Aperiodic Ising Quantum Chains
We consider Ising quantum chains with quenched aperiodic disorder of the
coupling constants given through general substitution rules. The critical
scaling behaviour of several bulk and surface quantities is obtained by exact
real space renormalization.Comment: 4 pages, RevTex, reference update
Partial survival and inelastic collapse for a randomly accelerated particle
We present an exact derivation of the survival probability of a randomly
accelerated particle subject to partial absorption at the origin. We determine
the persistence exponent and the amplitude associated to the decay of the
survival probability at large times. For the problem of inelastic reflection at
the origin, with coefficient of restitution , we give a new derivation of
the condition for inelastic collapse, , and determine
the persistence exponent exactly.Comment: 6 page
Latent space policy search for robotics
Learning motor skills for robots is a hard
task. In particular, a high number of degrees-of-freedom
in the robot can pose serious challenges to existing reinforcement
learning methods, since it leads to a highdimensional
search space. However, complex robots are
often intrinsically redundant systems and, therefore, can
be controlled using a latent manifold of much smaller
dimensionality. In this paper, we present a novel policy
search method that performs efficient reinforcement learning
by uncovering the low-dimensional latent space of
actuator redundancies. In contrast to previous attempts
at combining reinforcement learning and dimensionality
reduction, our approach does not perform dimensionality
reduction as a preprocessing step but naturally combines
it with policy search. Our evaluations show that the new
approach outperforms existing algorithms for learning
motor skills with high-dimensional robots
Metastability in zero-temperature dynamics: Statistics of attractors
The zero-temperature dynamics of simple models such as Ising ferromagnets
provides, as an alternative to the mean-field situation, interesting examples
of dynamical systems with many attractors (absorbing configurations, blocked
configurations, zero-temperature metastable states). After a brief review of
metastability in the mean-field ferromagnet and of the droplet picture, we
focus our attention onto zero-temperature single-spin-flip dynamics of
ferromagnetic Ising models. The situations leading to metastability are
characterized. The statistics and the spatial structure of the attractors thus
obtained are investigated, and put in perspective with uniform a priori
ensembles. We review the vast amount of exact results available in one
dimension, and present original results on the square and honeycomb lattices.Comment: 21 pages, 6 figures. To appear in special issue of JPCM on Granular
Matter edited by M. Nicodem
- …
