264 research outputs found
Supersymmetry for Fermion Masses
It is proposed that supersymmetry (SUSY) maybe used to understand fermion
mass hierarchies. A family symmetry Z_{3L} is introduced, which is the cyclic
symmetry among the three generation SU(2) doublets. SUSY breaks at a high
energy scale ~ 10^{11} GeV. The electroweak energy scale ~ 100 GeV is
unnaturally small. No additional global symmetry, like the R-parity, is
imposed. The Yukawa couplings and R-parity violating couplings all take their
natural values which are about (10^0-10^{-2}). Under the family symmetry, only
the third generation charged fermions get their masses. This family symmetry is
broken in the soft SUSY breaking terms which result in a hierarchical pattern
of the fermion masses. It turns out that for the charged leptons, the tau mass
is from the Higgs vacuum expectation value (VEV) and the sneutrino VEVs, the
muon mass is due to the sneutrino VEVs, and the electron gains its mass due to
both Z_{3L} and SUSY breaking. The large neutrino mixing are produced with
neutralinos playing the partial role of right-handed neutrinos. |V_{e3}| which
is for nu_e-nu_{tau} mixing is expected to be about 0.1. For the quarks, the
third generation masses are from the Higgs VEVs, the second generation masses
are from quantum corrections, and the down quark mass due to the sneutrino
VEVs. It explains m_c/m_s, m_s/m_e, m_d > m_u and so on. Other aspects of the
model are discussed.Comment: 25 pages, 3 figures, revtex4; neutrino oscillation and many
discussions added, smallness of the electron mass due to supersymmetry
pointed out; v3: numerical errors correcte
Leptons and photons at the LHC: cascades through spinless adjoints
We study the hadron collider phenomenology of (1,0) Kaluza-Klein modes along
two universal extra dimensions compactified on the chiral square. Cascade
decays of spinless adjoints proceed through tree-level 3-body decays involving
leptons as well as one-loop 2-body decays involving photons. As a result,
spectacular events with as many as six charged leptons, or one photon plus four
charged leptons are expected to be observed at the LHC. Unusual events with
relatively large branching fractions include three leptons of same charge plus
one lepton of opposite charge, or one photon plus two leptons of same charge.
We estimate the current limit from the Tevatron on the compactification scale,
set by searches for trilepton events, to be around 270 GeV.Comment: 33+1 pages, 14 figure
Decreased MCM2-6 in Drosophila S2 cells does not generate significant DNA damage or cause a marked increase in sensitivity to replication interference.
A reduction in the level of some MCM proteins in human cancer cells (MCM5 in U20S cells or MCM3 in Hela cells) causes a rapid increase in the level of DNA damage under normal conditions of cell proliferation and a loss of viability when the cells are subjected to replication interference. Here we show that Drosophila S2 cells do not appear to show the same degree of sensitivity to MCM2-6 reduction. Under normal cell growth conditions a reduction of >95% in the levels of MCM3, 5, and 6 causes no significant short term alteration in the parameters of DNA replication or increase in DNA damage. MCM depleted cells challenged with HU do show a decrease in the density of replication forks compared to cells with normal levels of MCM proteins, but this produces no consistent change in the levels of DNA damage observed. In contrast a comparable reduction of MCM7 levels has marked effects on viability, replication parameters and DNA damage in the absence of HU treatment
How large could the R-parity violating couplings be?
We investigate in detail the predictions coming from the d=4 operators for
proton decay. We find the most general constraints for the R-parity violating
couplings coming from proton decay, taking into account all fermion mixing and
in different supersymmetric scenarios.Comment: 8 pages, several corrections, to appear in J.Phys.G (2005
Precision Electroweak Observables in the Minimal Moose Little Higgs Model
Little Higgs theories, in which the Higgs particle is realized as the
pseudo-Goldstone boson of an approximate global chiral symmetry have generated
much interest as possible alternatives to weak scale supersymmetry. In this
paper we analyze precision electroweak observables in the Minimal Moose model
and find that in order to be consistent with current experimental bounds, the
gauge structure of this theory needs to be modified. We then look for viable
regions of parameter space in the modified theory by calculating the various
contributions to the S and T parameters.Comment: v2: 17 pages, 9 figures. Typeset in JHEP style. Added a references
and two figures showing parameter space for each of two reference points.
Corrected typo
Search for squarks and gluinos with the ATLAS detector in final states with jets and missing transverse momentum using √s=8 TeV proton-proton collision data
A search for squarks and gluinos in final states containing high-p T jets, missing transverse momentum and no electrons or muons is presented. The data were recorded in 2012 by the ATLAS experiment in s√=8 TeV proton-proton collisions at the Large Hadron Collider, with a total integrated luminosity of 20.3 fb−1. Results are interpreted in a variety of simplified and specific supersymmetry-breaking models assuming that R-parity is conserved and that the lightest neutralino is the lightest supersymmetric particle. An exclusion limit at the 95% confidence level on the mass of the gluino is set at 1330 GeV for a simplified model incorporating only a gluino and the lightest neutralino. For a simplified model involving the strong production of first- and second-generation squarks, squark masses below 850 GeV (440 GeV) are excluded for a massless lightest neutralino, assuming mass degenerate (single light-flavour) squarks. In mSUGRA/CMSSM models with tan β = 30, A 0 = −2m 0 and μ > 0, squarks and gluinos of equal mass are excluded for masses below 1700 GeV. Additional limits are set for non-universal Higgs mass models with gaugino mediation and for simplified models involving the pair production of gluinos, each decaying to a top squark and a top quark, with the top squark decaying to a charm quark and a neutralino. These limits extend the region of supersymmetric parameter space excluded by previous searches with the ATLAS detector
Can we distinguish between h^{SM} and h^0 in split supersymmetry?
We investigate the possibility to distinguish between the Standard Model
Higgs boson and the lightest Higgs boson in Split Supersymmetry. We point out
that the best way to distinguish between these two Higgs bosons is through the
decay into two photons. It is shown that there are large differences of several
percent between the predictions for \Gamma(h\to\gamma\gamma) in the two models,
making possible the discrimination at future photon-photon colliders. Once the
charginos are discovered at the next generation of collider experiments, the
well defined predictions for the Higgs decay into two photons will become a
cross check to identify the light Higgs boson in Split Supersymmetry.Comment: 8 pages, 3 Figures, typos fixed, version published in J.Phys. G31
(2005) 563-56
The OECD and phases in the international political economy, 1961–2011
In 2011, the OECD turned fifty. To provide a broad foundation for further thinking on this organization, we analyse its evolution over half a century from two perspectives: phases in the international political economy and the literature on IPE. By so doing, we uncover two paradoxes. Firstly, we find that the organization’s evolution closely mirrored major phases in the postwar international political economy until recently. However, the OECD’s long-term dependence on theWest has now become an obstacle to its efforts to adapt to the latest phase, characterised by the rise of non-Western powers. Secondly, we show that, during the OECD’s “golden age”, scholars paid relatively little attention to the organization but, from the 2000s, as the organization faced an unprecedented challenge of its potential economic decline, IPE literature on the organization blossomed
Cells and gene expression programs in the adult human heart
Cardiovascular disease is the leading cause of death worldwide. Advanced insights into disease mechanisms and strategies to improve therapeutic opportunities require deeper understanding of the molecular processes of the normal heart. Knowledge of the full repertoire of cardiac cells and their gene expression profiles is a fundamental first step in this endeavor. Here, using large-scale single cell and nuclei transcriptomic profiling together with state-of-the-art analytical techniques, we characterise the adult human heart cellular landscape covering six anatomical cardiac regions (left and right atria and ventricles, apex and interventricular septum). Our results highlight the cellular heterogeneity of cardiomyocytes, pericytes and fibroblasts, revealing distinct subsets in the atria and ventricles indicative of diverse developmental origins and specialized properties. Further we define the complexity of the cardiac vascular network which includes clusters of arterial, capillary, venous, lymphatic endothelial cells and an atrial-enriched population. By comparing cardiac cells to skeletal muscle and kidney, we identify cardiac tissue resident macrophage subsets with transcriptional signatures indicative of both inflammatory and reparative phenotypes. Further, inference of cell-cell interactions highlight a macrophage-fibroblast-cardiomyocyte network that differs between atria and ventricles, and compared to skeletal muscle. We expect this reference human cardiac cell atlas to advance mechanistic studies of heart homeostasis and disease
DNA replication timing is deterministic at the level of chromosomal domains but stochastic at the level of replicons in Xenopus egg extracts
Replication origins in Xenopus egg extracts are located at apparently random sequences but are activated in clusters that fire at different times during S phase under the control of ATR/ATM kinases. We investigated whether chromosomal domains and single sequences replicate at distinct times during S phase in egg extracts. Replication foci were found to progressively appear during early S phase and foci labelled early in one S phase colocalized with those labelled early in the next S phase. However, the distribution of these two early labels did not coincide between single origins or origin clusters on single DNA fibres. The 4 Mb Xenopus rDNA repeat domain was found to replicate later than the rest of the genome and to have a more nuclease-resistant chromatin structure. Replication initiated more frequently in the transcription unit than in the intergenic spacer. These results suggest for the first time that in this embryonic system, where transcription does not occur, replication timing is deterministic at the scale of large chromatin domains (1–5 Mb) but stochastic at the scale of replicons (10 kb) and replicon clusters (50–100 kb)
- …
