992 research outputs found
A novel approach for the assessment of morphological evolution based on observed water levels in tide-dominated estuaries
Assessing the impacts of both natural (e.g., tidal forcing from the ocean) and human-induced changes (e.g., dredging for navigation, land reclamation) on estuarine morphology is particularly important for the protection and management of the estuarine environment. In this study, a novel analytical approach is proposed for the assessment of estuarine morphological evolution in terms of tidally averaged depth on the basis of the observed water levels along the estuary. The key lies in deriving a relationship between wave celerity and tidal damping or amplification. For given observed water levels at two gauging stations, it is possible to have a first estimation of both wave celerity (distance divided by tidal travelling time) and tidal damping or amplification rate (tidal range difference divided by distance), which can then be used to predict the morphological changes via an inverse analytical model for tidal hydrodynamics. The proposed method is applied to the Lingdingyang Bay of the Pearl River Estuary, located on the southern coast of China, to analyse the historical development of the tidal hydrodynamics and morphological evolution. The analytical results show surprisingly good correspondence with observed water depth and volume in this system. The merit of the proposed method is that it provides a simple approach for understanding the decadal evolution of the estuarine morphology through the use of observed water levels, which are usually available and can be easily measured.National Key R&D of China (Grant No.
2016YFC0402601), National Natural Science Foundation of China (Grant No. 51979296, 51709287,
41706088, 41476073), Fundamental Research Funds for the Central Universities (No.18lgpy29)
and from the Water Resource Science and Technology Innovation Program of Guangdong Province (Grant
No. 2016-20, 2016-21). The work of the second author was supported by FCT research contracts
IF/00661/2014/CP1234.info:eu-repo/semantics/submittedVersio
Novel magnetic properties of graphene: Presence of both ferromagnetic and antiferromagnetic features and other aspects
Investigations of the magnetic properties of graphenes prepared by different
methods reveal that dominant ferromagnetic interactions coexist along with
antiferromagnetic interactions in all the samples. Thus, all the graphene
samples exhibit room-temperature magnetic hysteresis. The magnetic properties
depend on the number of layers and the sample area, small values of both
favoring larger magnetization. Molecular charge-transfer affects the magnetic
properties of graphene, interaction with a donor molecule such as
tetrathiafulvalene having greater effect than an electron-withdrawing molecule
such as tetracyanoethyleneComment: 16 pges, 5 figure
Quenching of fluorescence of aromatic molecules by graphene due to electron transfer
Investigations on the fluorescence quenching of graphene have been carried
out with two organic donor molecules, pyrene butanaoic acid succinimidyl ester
(PyBS, I) and oligo(p-phenylenevinylene) methyl ester (OPV-ester, II).
Absorption and photoluminescence spectra of I and II recorded in mixture with
increasing the concentrations of graphene showed no change in the former, but
remarkable quenching of fluorescence. The property of graphene to quench
fluorescence of these aromatic molecules is shown to be associated with
photo-induced electron transfer, on the basis of fluorescence decay and
time-resolved transient absorption spectroscopic measurements.Comment: 18 pages, 6 figure
Optical signature of symmetry variations and spin-valley coupling in atomically thin tungsten dichalcogenides
Motivated by the triumph and limitation of graphene for electronic
applications, atomically thin layers of group VI transition metal
dichalcogenides are attracting extensive interest as a class of graphene-like
semiconductors with a desired band-gap in the visible frequency range. The
monolayers feature a valence band spin splitting with opposite sign in the two
valleys located at corners of 1st Brillouin zone. This spin-valley coupling,
particularly pronounced in tungsten dichalcogenides, can benefit potential
spintronics and valleytronics with the important consequences of spin-valley
interplay and the suppression of spin and valley relaxations. Here we report
the first optical studies of WS2 and WSe2 monolayers and multilayers. The
efficiency of second harmonic generation shows a dramatic even-odd oscillation
with the number of layers, consistent with the presence (absence) of inversion
symmetry in even-layer (odd-layer). Photoluminescence (PL) measurements show
the crossover from an indirect band gap semiconductor at mutilayers to a
direct-gap one at monolayers. The PL spectra and first-principle calculations
consistently reveal a spin-valley coupling of 0.4 eV which suppresses
interlayer hopping and manifests as a thickness independent splitting pattern
at valence band edge near K points. This giant spin-valley coupling, together
with the valley dependent physical properties, may lead to rich possibilities
for manipulating spin and valley degrees of freedom in these atomically thin 2D
materials
Complete classification of purely magnetic, non-rotating and non-accelerating perfect fluids
Recently the class of purely magnetic non-rotating dust spacetimes has been
shown to be empty (Wylleman, Class. Quant. Grav. 23, 2727). It turns out that
purely magnetic rotating dust models are subject to severe integrability
conditions as well. One of the consequences of the present paper is that also
rotating dust cannot be purely magnetic when it is of Petrov type D or when it
has a vanishing spatial gradient of the energy density. For purely magnetic and
non-rotating perfect fluids on the other hand, which have been fully classified
earlier for Petrov type D (Lozanovski, Class. Quant. Grav. 19, 6377), the fluid
is shown to be non-accelerating if and only if the spatial density gradient
vanishes. Under these conditions, a new and algebraically general solution is
found, which is unique up to a constant rescaling, which is spatially
homogeneous of Bianchi type , has degenerate shear and is of Petrov type
I( in the extended Arianrhod-McIntosh classification.
The metric and the equation of state are explicitly constructed and
properties of the model are briefly discussed. We finally situate it within the
class of normal geodesic flows with degenerate shear tensor.Comment: 12 pages; introduction partly rewritten, notation made more clear,
table of results adde
Weak Gravitational Field in Finsler-Randers Space and Raychaudhuri Equation
The linearized form of the metric of a Finsler - Randers space is studied in
relation to the equations of motion, the deviation of geodesics and the
generalized Raychaudhuri equation are given for a weak gravitational field.
This equation is also derived in the framework of a tangent bundle. By using
Cartan or Berwald-like connections we get some types "gravito -
electromagnetic" curvature. In addition we investigate the conditions under
which a definite Lagrangian in a Randers space leads to Einstein field
equations under the presence of electromagnetic field. Finally, some
applications of the weak field in a generalized Finsler spacetime for
gravitational waves are given.Comment: 22 pages, matches version published in GER
Gravitomagnetism and the Clock Effect
The main theoretical aspects of gravitomagnetism are reviewed. It is shown
that the gravitomagnetic precession of a gyroscope is intimately connected with
the special temporal structure around a rotating mass that is revealed by the
gravitomagnetic clock effect. This remarkable effect, which involves the
difference in the proper periods of a standard clock in prograde and retrograde
circular geodesic orbits around a rotating mass, is discussed in detail. The
implications of this effect for the notion of ``inertial dragging'' in the
general theory of relativity are presented. The theory of the clock effect is
developed within the PPN framework and the possibility of measuring it via
spaceborne clocks is examined.Comment: 27 pages, LaTeX, submitted to Proc. Bad Honnef Meeting on: GYROS,
CLOCKS, AND INTERFEROMETERS: TESTING GENERAL RELATIVITY IN SPACE (22 - 27
August 1999; Bad Honnef, Germany
Line Defects in Molybdenum Disulfide Layers
Layered molecular materials and especially MoS2 are already accepted as
promising candidates for nanoelectronics. In contrast to the bulk material, the
observed electron mobility in single-layer MoS2 is unexpectedly low. Here we
reveal the occurrence of intrinsic defects in MoS2 layers, known as inversion
domains, where the layer changes its direction through a line defect. The line
defects are observed experimentally by atomic resolution TEM. The structures
were modeled and the stability and electronic properties of the defects were
calculated using quantum-mechanical calculations based on the
Density-Functional Tight-Binding method. The results of these calculations
indicate the occurrence of new states within the band gap of the semiconducting
MoS2. The most stable non-stoichiometric defect structures are observed
experimentally, one of which contains metallic Mo-Mo bonds and another one
bridging S atoms
Theorems on shear-free perfect fluids with their Newtonian analogues
In this paper we provide fully covariant proofs of some theorems on
shear-free perfect fluids. In particular, we explicitly show that any
shear-free perfect fluid with the acceleration proportional to the vorticity
vector (including the simpler case of vanishing acceleration) must be either
non-expanding or non-rotating. We also show that these results are not
necessarily true in the Newtonian case, and present an explicit comparison of
shear-free dust in Newtonian and relativistic theories in order to see where
and why the differences appear.Comment: 23 pages, LaTeX. Submitted to GR
Gravito-electromagnetic analogies
We reexamine and further develop different gravito-electromagnetic (GEM)
analogies found in the literature, and clarify the connection between them.
Special emphasis is placed in two exact physical analogies: the analogy based
on inertial fields from the so-called "1+3 formalism", and the analogy based on
tidal tensors. Both are reformulated, extended and generalized. We write in
both formalisms the Maxwell and the full exact Einstein field equations with
sources, plus the algebraic Bianchi identities, which are cast as the
source-free equations for the gravitational field. New results within each
approach are unveiled. The well known analogy between linearized gravity and
electromagnetism in Lorentz frames is obtained as a limiting case of the exact
ones. The formal analogies between the Maxwell and Weyl tensors are also
discussed, and, together with insight from the other approaches, used to
physically interpret gravitational radiation. The precise conditions under
which a similarity between gravity and electromagnetism occurs are discussed,
and we conclude by summarizing the main outcome of each approach.Comment: 60 pages, 2 figures. Improved version (compared to v2) with some
re-write, notation improvements and a new figure that match the published
version; expanded compared to the published version to include Secs. 2.3 and
- …
