461 research outputs found
Genome-Wide Footprints of Pig Domestication and Selection Revealed through Massive Parallel Sequencing of Pooled DNA
Background Artificial selection has caused rapid evolution in domesticated species. The identification of selection footprints across domesticated genomes can contribute to uncover the genetic basis of phenotypic diversity. Methodology/Main Findings Genome wide footprints of pig domestication and selection were identified using massive parallel sequencing of pooled reduced representation libraries (RRL) representing ~2% of the genome from wild boar and four domestic pig breeds (Large White, Landrace, Duroc and Pietrain) which have been under strong selection for muscle development, growth, behavior and coat color. Using specifically developed statistical methods that account for DNA pooling, low mean sequencing depth, and sequencing errors, we provide genome-wide estimates of nucleotide diversity and genetic differentiation in pig. Widespread signals suggestive of positive and balancing selection were found and the strongest signals were observed in Pietrain, one of the breeds most intensively selected for muscle development. Most signals were population-specific but affected genomic regions which harbored genes for common biological categories including coat color, brain development, muscle development, growth, metabolism, olfaction and immunity. Genetic differentiation in regions harboring genes related to muscle development and growth was higher between breeds than between a given breed and the wild boar. Conclusions/Significance These results, suggest that although domesticated breeds have experienced similar selective pressures, selection has acted upon different genes. This might reflect the multiple domestication events of European breeds or could be the result of subsequent introgression of Asian alleles. Overall, it was estimated that approximately 7% of the porcine genome has been affected by selection events. This study illustrates that the massive parallel sequencing of genomic pools is a cost-effective approach to identify footprints of selection
Electric-field induced capillary interaction of charged particles at a polar interface
We study the electric-field induced capillary interaction of charged
particles at a polar interface. The algebraic tails of the electrostatic
pressure of each charge results in a deformation of the interface . The resulting capillary interaction is repulsive and varies as with the particle distance. As a consequence, electric-field induced
capillary forces cannot be at the origin of the secondary minimum observed
recently for charged PMMA particles at on oil-water interface.Comment: June 200
Emission Spectrum of a Dipole in a Semi-infinite Periodic Dielectric Structure: Effect of the Boundary
The emission spectrum of a dipole embedded in a semi-infinite photonic
crystal is calculated. For simplicity we study the case in which the dielectric
function is sinusoidally modulated only along the direction perpendicular to
the boundary surface plane. In addition to oscillations of the emission rate
with the distance of the dipole from the interface we also observed that the
shape of the emission spectrum srongly depends on the \em initial \em phase
of the dielectric modulation. When the direction of light propagation inside
the periodic structure is not normal to the boundary surface plane we observed
aditional singularities in the emission spectrum, which arise due to different
angle-dependence of the Bragg stop-band for and polarizations.Comment: 14 pages, 6 figures, to appear in Phys Rev
Angular redistribution of near-infrared emission from quantum dots in 3D photonic crystals
We study the angle-resolved spontaneous emission of near-infrared light
sources in 3D photonic crystals over a wavelength range from 1200 to 1550 nm.
To this end PbSe quantum dots are used as light sources inside titania inverse
opal photonic crystals. Strong deviations from the Lambertian emission profile
are observed. An attenuation of 60 % is observed in the angle dependent radiant
flux emitted from the samples due to photonic stop bands. At angles that
correspond to the edges of the stop band the emitted flux is increased by up to
34 %. This increase is explained by the redistribution of Bragg-diffracted
light over the available escape angles. The results are quantitatively
explained by an expanded escape-function model. This model is based on
diffusion theory and adapted to photonic crystals using band structure
calculations. Our results are the first angular redistributions and escape
functions measured at near-infrared, including telecom, wavelengths. In
addition, this is the first time for this model to be applied to describe
emission from samples that are optically thick for the excitation light and
relatively thin for the photoluminesence light.Comment: 24 pages, 8 figures (current format = single column, double spaced
A simple formula for the L-gap width of a face-centered-cubic photonic crystal
The width of the first Bragg's scattering peak in the (111)
direction of a face-centered-cubic lattice of air spheres can be well
approximated by a simple formula which only involves the volume averaged
and over the lattice unit cell, being the
(position dependent) dielectric constant of the medium, and the effective
dielectric constant in the long-wavelength limit approximated
by Maxwell-Garnett's formula. Apparently, our formula describes the asymptotic
behaviour of the absolute gap width for high dielectric contrast
exactly. The standard deviation steadily decreases well below
1% as increases. For example for the sphere filling
fraction and . On the interval , our
formula still approximates the absolute gap width (the relative
gap width ) with a reasonable precision, namely with a standard
deviation 3% (4.2%) for low filling fractions up to 6.5% (8%) for the
close-packed case. Differences between the case of air spheres in a dielectric
and dielectric spheres in air are briefly discussed.Comment: 13 pages, 4 figs., RevTex, two references added. For more info see
http://www.amolf.nl/external/wwwlab/atoms/theory/index.htm
Free energy of colloidal particles at the surface of sessile drops
The influence of finite system size on the free energy of a spherical
particle floating at the surface of a sessile droplet is studied both
analytically and numerically. In the special case that the contact angle at the
substrate equals a capillary analogue of the method of images is
applied in order to calculate small deformations of the droplet shape if an
external force is applied to the particle. The type of boundary conditions for
the droplet shape at the substrate determines the sign of the capillary
monopole associated with the image particle. Therefore, the free energy of the
particle, which is proportional to the interaction energy of the original
particle with its image, can be of either sign, too. The analytic solutions,
given by the Green's function of the capillary equation, are constructed such
that the condition of the forces acting on the droplet being balanced and of
the volume constraint are fulfilled. Besides the known phenomena of attraction
of a particle to a free contact line and repulsion from a pinned one, we
observe a local free energy minimum for the particle being located at the drop
apex or at an intermediate angle, respectively. This peculiarity can be traced
back to a non-monotonic behavior of the Green's function, which reflects the
interplay between the deformations of the droplet shape and the volume
constraint.Comment: 24 pages, 19 figure
Consequences of epistasis on growth in an erhualian × white duroc pig cross
Epistasis describes an interaction between the effects of loci. We included epistasis in quantitative trait locus (QTL) mapping of growth at a series of ages in a cross of a Chinese pig breed, Erhualian, with a commercial line, White Duroc. Erhualian pigs have much lower growth rates than White Duroc. We improved a method for genomewide testing of epistasis and present a clear analysis workflow. We also suggest a new approach for interpreting epistasis results where significant additive and dominance effects of a locus in specific backgrounds are determined. In total, seventeen QTL were found and eleven showed epistasis. Loci on chromosomes 2, 3, 4 and 7 were highlighted as affecting growth at more than one age or forming an interaction network. Epistasis resulted in both the QTL on chromosomes 3 and 7 having effects in opposite directions. We believe it is the first time for the chromosome 7 locus that an allele from a Chinese breed has been found to decrease growth. The consequences of epistasis were diverse. Results were impacted by using growth rather than body weight as the phenotype and by correcting for an effect of mother. Epistasis made a considerable contribution to growth in this population and modelling epistasis was important for accurately determining QTL effects
Genome-wide analysis reveals the extent of EAV-HP integration in domestic chicken
Background: EAV-HP is an ancient retrovirus pre-dating Gallus speciation, which continues to circulate in modern chicken populations, and led to the emergence of avian leukosis virus subgroup J causing significant economic losses to the poultry industry. We mapped EAV-HP integration sites in Ethiopian village chickens, a Silkie, Taiwan Country chicken, red junglefowl Gallusgallus and several inbred experimental lines using whole-genome sequence data.
Results: An average of 75.22 ± 9.52 integration sites per bird were identified, which collectively group into 279 intervals of which 5% are common to 90% of the genomes analysed and are suggestive of pre-domestication integration events. More than a third of intervals are specific to individual genomes, supporting active circulation of EAV-HP in modern chickens. Interval density is correlated with chromosome length (P<2.31−6), and 27 % of intervals are located within 5 kb of a transcript. Functional annotation clustering of genes reveals enrichment for immune-related functions (P<0.05).
Conclusions: Our results illustrate a non-random distribution of EAV-HP in the genome, emphasising the importance it may have played in the adaptation of the species, and provide a platform from which to extend investigations on the co-evolutionary significance of endogenous retroviral genera with their hosts
Strong signatures of selection in the domestic pig genome
Domestication of wild boar (Sus scrofa) and subsequent selection have resulted in dramatic phenotypic changes in domestic pigs for a number of traits, including behavior, body composition, reproduction, and coat color. Here we have used whole-genome resequencing to reveal some of the loci that underlie phenotypic evolution in European domestic pigs. Selective sweep analyses revealed strong signatures of selection at three loci harboring quantitative trait loci that explain a considerable part of one of the most characteristic morphological changes in the domestic pig—the elongation of the back and an increased number of vertebrae. The three loci were associated with the NR6A1, PLAG1, and LCORL genes. The latter two have repeatedly been associated with loci controlling stature in other domestic animals and in humans. Most European domestic pigs are homozygous for the same haplotype at these three loci. We found an excess of derived nonsynonymous substitutions in domestic pigs, most likely reflecting both positive selection and relaxed purifying selection after domestication. Our analysis of structural variation revealed four duplications at the KIT locus that were exclusively present in white or white-spotted pigs, carrying the Dominant white, Patch, or Belt alleles. This discovery illustrates how structural changes have contributed to rapid phenotypic evolution in domestic animals and how alleles in domestic animals may evolve by the accumulation of multiple causative mutations as a response to strong directional selection
- …
