33,302 research outputs found
Stochastic Biasing and Galaxy-Mass Density Relation in the Weakly Non-linear Regime
It is believed that the biasing of the galaxies plays an important role for
understanding the large-scale structure of the universe. In general, the
biasing of galaxy formation could be stochastic. Furthermore, the future galaxy
survey might allow us to explore the time evolution of the galaxy distribution.
In this paper, the analytic study of the galaxy-mass density relation and its
time evolution is presented within the framework of the stochastic biasing. In
the weakly non-linear regime, we derive a general formula for the galaxy-mass
density relation as a conditional mean using the Edgeworth expansion. The
resulting expression contains the joint moments of the total mass and galaxy
distributions. Using the perturbation theory, we investigate the time evolution
of the joint moments and examine the influence of the initial stochasticity on
the galaxy-mass density relation. The analysis shows that the galaxy-mass
density relation could be well-approximated by the linear relation. Compared
with the skewness of the galaxy distribution, we find that the estimation of
the higher order moments using the conditional mean could be affected by the
stochasticity. Therefore, the galaxy-mass density relation as a conditional
mean should be used with a caution as a tool for estimating the skewness and
the kurtosis.Comment: 22 pages, 7 Encapusulated Postscript Figures, aastex, The title and
the structure of the paper has been changed, Results and conclusions
unchanged, Accepted for publication in Ap
Structure formation from non-Gaussian initial conditions: multivariate biasing, statistics, and comparison with N-body simulations
We study structure formation in the presence of primordial non-Gaussianity of
the local type with parameters f_NL and g_NL. We show that the distribution of
dark-matter halos is naturally described by a multivariate bias scheme where
the halo overdensity depends not only on the underlying matter density
fluctuation delta, but also on the Gaussian part of the primordial
gravitational potential phi. This corresponds to a non-local bias scheme in
terms of delta only. We derive the coefficients of the bias expansion as a
function of the halo mass by applying the peak-background split to common
parametrizations for the halo mass function in the non-Gaussian scenario. We
then compute the halo power spectrum and halo-matter cross spectrum in the
framework of Eulerian perturbation theory up to third order. Comparing our
results against N-body simulations, we find that our model accurately describes
the numerical data for wavenumbers k < 0.1-0.3 h/Mpc depending on redshift and
halo mass. In our multivariate approach, perturbations in the halo counts trace
phi on large scales and this explains why the halo and matter power spectra
show different asymptotic trends for k -> 0. This strongly scale-dependent bias
originates from terms at leading order in our expansion. This is different from
what happens using the standard univariate local bias where the scale-dependent
terms come from badly behaved higher-order corrections. On the other hand, our
biasing scheme reduces to the usual local bias on smaller scales where |phi| is
typically much smaller than the density perturbations. We finally discuss the
halo bispectrum in the context of multivariate biasing and show that, due to
its strong scale and shape dependence, it is a powerful tool for the detection
of primordial non-Gaussianity from future galaxy surveys.Comment: 26 pages, 16 figures. Minor modifications, version accepted by Phys.
Rev.
The time-evolution of bias
We study the evolution of the bias factor b and the mass-galaxy correlation
coefficient r in a simple analytic model for galaxy formation and the
gravitational growth of clustering. The model shows that b and r can be
strongly time-dependent, but tend to approach unity even if galaxy formation
never ends as the gravitational growth of clustering debiases the older
galaxies. The presence of random fluctuations in the sites of galaxy formation
relative to the mass distribution can cause large and rapidly falling bias
values at high redshift.Comment: 4 pages, with 2 figures included. Typos corrected to match published
ApJL version. Color figure and links at http://www.sns.ias.edu/~max/bias.html
or from [email protected]
Path integration in relativistic quantum mechanics
The simple physics of a free particle reveals important features of the
path-integral formulation of relativistic quantum theories. The exact
quantum-mechanical propagator is calculated here for a particle described by
the simple relativistic action proportional to its proper time. This propagator
is nonvanishing outside the light cone, implying that spacelike trajectories
must be included in the path integral. The propagator matches the WKB
approximation to the corresponding configuration-space path integral far from
the light cone; outside the light cone that approximation consists of the
contribution from a single spacelike geodesic. This propagator also has the
unusual property that its short-time limit does not coincide with the WKB
approximation, making the construction of a concrete skeletonized version of
the path integral more complicated than in nonrelativistic theory.Comment: 14 page
- …
