59 research outputs found

    Luminous red galaxies in the Kilo Degree Survey: selection with broad-band photometry and weak lensing measurements

    Get PDF
    We use the overlap between multiband photometry of the Kilo-Degree Survey (KiDS) and spectroscopic data based on the Sloan Digital Sky Survey (SDSS) and Galaxy And Mass Assembly (GAMA) to infer the colour-magnitude relation of red-sequence galaxies. We then use this inferred relation to select luminous red galaxies (LRGs) in the redshift range of 0.1<z<0.70.1<z<0.7 over the entire KiDS Data Release 3 footprint. We construct two samples of galaxies with different constant comoving densities and different luminosity thresholds. The selected red galaxies have photometric redshifts with typical photo-z errors of σz0.014(1+z)\sigma_z \sim 0.014 (1+z) that are nearly uniform with respect to observational systematics. This makes them an ideal set of galaxies for lensing and clustering studies. As an example, we use the KiDS-450 cosmic shear catalogue to measure the mean tangential shear signal around the selected LRGs. We detect a significant weak lensing signal for lenses out to z0.7z \sim 0.7

    Organised Randoms: learning and correcting for systematic galaxy clustering patterns in KiDS using self-organising maps

    Get PDF
    We present a new method for the mitigation of observational systematic effects in angular galaxy clustering via corrective random galaxy catalogues. Real and synthetic galaxy data, from the Kilo Degree Survey's (KiDS) 4th^{\rm{th}} Data Release (KiDS-10001000) and the Full-sky Lognormal Astro-fields Simulation Kit (FLASK) package respectively, are used to train self-organising maps (SOMs) to learn the multivariate relationships between observed galaxy number density and up to six systematic-tracer variables, including seeing, Galactic dust extinction, and Galactic stellar density. We then create `organised' randoms, i.e. random galaxy catalogues with spatially variable number densities, mimicking the learnt systematic density modes in the data. Using realistically biased mock data, we show that these organised randoms consistently subtract spurious density modes from the two-point angular correlation function w(ϑ)w(\vartheta), correcting biases of up to 12σ12\sigma in the mean clustering amplitude to as low as 0.1σ0.1\sigma, over a high signal-to-noise angular range of 7-100 arcmin. Their performance is also validated for angular clustering cross-correlations in a bright, flux-limited subset of KiDS-10001000, comparing against an analogous sample constructed from highly-complete spectroscopic redshift data. Each organised random catalogue object is a `clone' carrying the properties of a real galaxy, and is distributed throughout the survey footprint according to the parent galaxy's position in systematics-space. Thus, sub-sample randoms are readily derived from a single master random catalogue via the same selection as applied to the real galaxies. Our method is expected to improve in performance with increased survey area, galaxy number density, and systematic contamination, making organised randoms extremely promising for current and future clustering analyses of faint samples.Comment: 18 pages (6 appendix pages), 12 figures (8 appendix figures), submitted to A&

    Clustering of red-sequence galaxies in the fourth data release ofthe Kilo-Degree Survey

    Get PDF
    We present a sample of luminous red-sequence galaxies to study the large-scale structure in the fourth data release of the Kilo-Degree Survey. The selected galaxies are defined by a red-sequence template, in the form of a data-driven model of the colour-magnitude relation conditioned on redshift. In this work, the red-sequence template is built using the broad-band optical+near infrared photometry of KiDS-VIKING and the overlapping spectroscopic data sets. The selection process involves estimating the red-sequence redshifts, assessing the purity of the sample, and estimating the underlying redshift distributions of redshift bins. After performing the selection, we mitigate the impact of survey properties on the observed number density of galaxies by assigning photometric weights to the galaxies. We measure the angular two-point correlation function of the red galaxies in four redshift bins, and constrain the large scale bias of our red-sequence sample assuming a fixed Λ\LambdaCDM cosmology. We find consistent linear biases for two luminosity-threshold samples (dense and luminous). We find that our constraints are well characterized by the passive evolution model.Comment: submitted to A&

    A Seismic Performance Classification Framework to Provide Increased Seismic Resilience

    Get PDF
    Several performance measures are being used in modern seismic engineering applications, suggesting that seismic performance could be classified a number of ways. This paper reviews a range of performance measures currently being adopted and then proposes a new seismic performance classification framework based on expected annual losses (EAL). The motivation for an EAL-based performance framework stems from the observation that, in addition to limiting lives lost during earthquakes, changes are needed to improve the resilience of our societies, and it is proposed that increased resilience in developed countries could be achieved by limiting monetary losses. In order to set suitable preliminary values of EAL for performance classification, values of EAL reported in the literature are reviewed. Uncertainties in current EAL estimates are discussed and then an EAL-based seismic performance classification framework is proposed. The proposal is made that the EAL should be computed on a storey-by-storey basis in recognition that EAL for different storeys of a building could vary significantly and also recognizing that a single building may have multiple owners

    Starvation-induced proteasome assemblies in the nucleus link amino acid supply to apoptosis.

    Full text link
    peer reviewedEukaryotic cells have evolved highly orchestrated protein catabolic machineries responsible for the timely and selective disposal of proteins and organelles, thereby ensuring amino acid recycling. However, how protein degradation is coordinated with amino acid supply and protein synthesis has remained largely elusive. Here we show that the mammalian proteasome undergoes liquid-liquid phase separation in the nucleus upon amino acid deprivation. We termed these proteasome condensates SIPAN (Starvation-Induced Proteasome Assemblies in the Nucleus) and show that these are a common response of mammalian cells to amino acid deprivation. SIPAN undergo fusion events, rapidly exchange proteasome particles with the surrounding milieu and quickly dissolve following amino acid replenishment. We further show that: (i) SIPAN contain K48-conjugated ubiquitin, (ii) proteasome inhibition accelerates SIPAN formation, (iii) deubiquitinase inhibition prevents SIPAN resolution and (iv) RAD23B proteasome shuttling factor is required for SIPAN formation. Finally, SIPAN formation is associated with decreased cell survival and p53-mediated apoptosis, which might contribute to tissue fitness in diverse pathophysiological conditions

    Evidence for conformational change-induced hydrolysis of β-tubulin-GTP

    Full text link
    ABSTRACTMicrotubules, protein polymers of α/β-tubulin dimers, form the structural framework for many essential cellular processes including cell shape formation, intracellular transport, and segregation of chromosomes during cell division. It is known that tubulin-GTP hydrolysis is closely associated with microtubule polymerization dynamics. However, the precise roles of GTP hydrolysis in tubulin polymerization and microtubule depolymerization, and how it is initiated are still not clearly defined. We report here that tubulin-GTP hydrolysis can be triggered by conformational change induced by the depolymerizing kinesin-13 proteins or by the stabilizing chemical agent paclitaxel. We provide biochemical evidence that conformational change precedes tubulin-GTP hydrolysis, confirming this process is mechanically driven and structurally directional. Furthermore, we quantitatively measure the average size of the presumptive stabilizing “GTP cap” at growing microtubule ends. Together, our findings provide the molecular basis for tubulin-GTP hydrolysis and its role in microtubule polymerization and depolymerization.</jats:p

    Non-symmetric multi-antenna coded caching for location-dependent content delivery

    No full text
    Abstract Immersive viewing, as the next-generation interface for human-computer interaction, is emerging as a wireless application. A genuinely wireless immersive experience necessitates immense data delivery with ultra-low latency, raising stringent requirements for future wireless networks. In this regard, efficient usage of in-device storage and computation capabilities is a potential candidate for addressing these requirements. In addition, recent advancement in multi-antenna transmission has significantly enhanced wireless communication. Hence, this paper proposes a novel location-based multi-antenna coded cache placement and delivery scheme. We first formulate a linear programming cache allocation problem to provide a uniform quality of experience in different network locations; then, cache-placement is done for each location independently. Subsequently, based on the users’ spatial realizations, a transmission vector is created considering diverse available memory at each user. Moreover, a weighted-max-min optimization is used for the beamformers to support different transmission rates. Finally, numerical results are used to show the performance of the proposed scheme
    corecore