3,192 research outputs found
Adsorption of H2O, NH3, CO, NO2, and NO on graphene: A first-principles study
Motivated by the recent realization of graphene sensors to detect individual
gas molecules, we investigate the adsorption of H2O, NH3, CO, NO2, and NO on a
graphene substrate using first-principles calculations. The optimal adsorption
position and orientation of these molecules on the graphene surface is
determined and the adsorption energies are calculated. Molecular doping, i.e.
charge transfer between the molecules and the graphene surface, is discussed in
light of the density of states and the molecular orbitals of the adsorbates.
The efficiency of doping of the different molecules is determined and the
influence of their magnetic moment is discussed.Comment: 6 pages, 6 figure
The mystery of relationship of mechanics and field in the many-body quantum world
We have revealed three fatal errors incurred from a blind transferring of
quantum field methods into the quantum mechanics. This had tragic consequences
because it produced crippled model Hamiltonians, unfortunately considered
sufficient for a description of solids including superconductors. From there,
of course, Fr\"ohlich derived wrong effective Hamiltonian, from which incorrect
BCS theory arose.
1) Mechanical and field patterns cannot be mixed. Instead of field methods
applied to the mechanical Born-Oppenheimer approximation we have entirely to
avoid it and construct an independent and standalone field pattern. This leads
to a new form of the Bohr's complementarity on the level of composite systems.
2) We have correctly to deal with the center of gravity, which is under the
field pattern "materialized" in the form of new quasipartiles - rotons and
translons. This leads to a new type of relativity of internal and external
degrees of freedom and one-particle way of bypassing degeneracies (gap
formation).
3) The possible symmetry cannot be apriori loaded but has to be aposteriori
obtained as a solution of field equations, formulated in a general form without
translational or any other symmetry. This leads to an utterly revised view of
symmetry breaking in non-adiabatic systems, namely Jahn-Teller effect and
superconductivity. These two phenomena are synonyms and share a unique symmetry
breaking.Comment: 24 pages, 9 sections; remake of abstract, introduction and
conclusion; more physics, less philosoph
First principles investigation of the electronic structure of La2MnNiO6: A room-temperature insulating ferromagnet
Using first principles calculations within DFT based on the full potential
APW+lo method, we calculated the electronic and magnetic structures for the
ferromagnetic and antiferromagnetic states of La2MnNiO6 and analyzed the site
projected density of states and electronic band structures. Our calculations
show that the ground state of La2MnNiO6 is ferromagnetic insulating with the
magnetization in agreement with Hund's first rule and experimental findings.Comment: 10 pages, 3 figure
Strain-Dependence of Surface Diffusion: Ag on Ag(111) and Pt(111)
Using density-functional theory with the local-density approximation and the
generalized gradient approximation we compute the energy barriers for surface
diffusion for Ag on Pt(111), Ag on one monolayer of Ag on Pt(111), and Ag on
Ag(111). The diffusion barrier for Ag on Ag(111) is found to increase linearly
with increasing lattice constant. We also discuss the reconstruction that has
been found experimentally when two Ag layers are deposited on Pt(111). Our
calculations explain why this strain driven reconstruction occurs only after
two Ag layers have been deposited.Comment: 4 pages, 3 figures, Phys. Rev. B 55 (1997), in pres
Variational finite-difference representation of the kinetic energy operator
A potential disadvantage of real-space-grid electronic structure methods is
the lack of a variational principle and the concomitant increase of total
energy with grid refinement. We show that the origin of this feature is the
systematic underestimation of the kinetic energy by the finite difference
representation of the Laplacian operator. We present an alternative
representation that provides a rigorous upper bound estimate of the true
kinetic energy and we illustrate its properties with a harmonic oscillator
potential. For a more realistic application, we study the convergence of the
total energy of bulk silicon using a real-space-grid density-functional code
and employing both the conventional and the alternative representations of the
kinetic energy operator.Comment: 3 pages, 3 figures, 1 table. To appear in Phys. Rev. B. Contribution
for the 10th anniversary of the eprint serve
Ab initio phonon dispersion curves and interatomic force constants of barium titanate
The phonon dispersion curves of cubic BaTiO_3 have been computed within a
first-principles approach and the results compared to the experimental data.
The curves obtained are very similar to those reported for KNbO_3 by Yu and
Krakauer [Phys. Rev. Lett. 74, 4067 (1995)]. They reveal that correlated atomic
displacements along chains are at the origin of the ferroelectric
instability. A simplified model illustrates that spontaneous collective
displacements will occur when a dozen of aligned atoms are coupled. The
longitudinal interatomic force constant between nearest neighbour Ti and O
atoms is relatively weak in comparison to that between Ti atoms in adjacent
cells. The small coupling between Ti and O displacements seems however
necessary to reproduce a ferroelectric instability.Comment: 12 pages, 4 figure
Robust ab initio calculation of condensed matter: transparent convergence through semicardinal multiresolution analysis
We present the first wavelet-based all-electron density-functional
calculations to include gradient corrections and the first in a solid. Direct
comparison shows this approach to be unique in providing systematic
``transparent'' convergence, convergence with a priori prediction of errors, to
beyond chemical (millihartree) accuracy. The method is ideal for exploration of
materials under novel conditions where there is little experience with how
traditional methods perform and for the development and use of chemically
accurate density functionals, which demand reliable access to such precision.Comment: 4 pages, 3 figures, 4 tables. Submitted to Phys. Rev. Lett. (updated
to include GGA
The Structure of the [Zn_In - V_P] Defect Complex in Zn Doped InP
We study the structure, the formation and binding energies and the transfer
levels of the zinc-phosphorus vacancy complex [Zn_In - V_P] in Zn doped p-type
InP, as a function of the charge, using plane wave ab initio DFT-LDA
calculations in a 64 atom supercell. We find a binding energy of 0.39 eV for
the complex, which is neutral in p-type material, the 0/-1 transfer level lying
0.50 eV above the valence band edge, all in agreement with recent positron
annihilation experiments. This indicates that, whilst the formation of
phosphorus vacancies (V_P) may be involved in carrier compensation in heavily
Zn doped material, the formation of Zn-vacancy complexes is not.
Regarding the structure: for charge states Q=+6 to -4 the Zn atom is in an
sp^2 bonded DX position and electrons added/removed go to/come from the
remaining dangling bonds on the triangle of In atoms. This reduces the
effective vacancy volume monatonically as electrons are added to the complex,
also in agreement with experiment. The reduction occurs through a combination
of increased In-In bonding and increased Zn-In electrostatic attraction. In
addition, for certain charge states we find complex Jahn-Teller behaviour in
which up to three different structures, (with the In triangle dimerised,
antidimerised or symmetric) are stable and are close to degenerate. We are able
to predict and successfully explain the structural behaviour of this complex
using a simple tight binding model.Comment: 10 pages text (postscript) plus 8 figures (jpeg). Submitted to Phys.
Rev.
Role of Boron p-Electrons and Holes in Superconducting MgB2, and other Diborides: A Fully-Relaxed, Full-Potential Electronic Structure Study
We present the results of fully-relaxed, full-potential electronic structure
calculations for the new superconductor MgB2, and BeB2, NaB2, and AlB2, using
density-functional-based methods. Our results described in terms of (i) density
of states (DOS), (ii) band-structure, and (iii) the DOS and the charge density
around the Fermi energy EF, clearly show the importance of B p-band for
superconductivity. In particular, we show that around EF, the charge density in
MgB2, BeB2 and NaB2 is planar and is associated with the B plane. For BeB2 and
NaB2, our results indicate qualitative similarities but significant
quantitative differences in their electronic structure due to different lattice
constants a and c.Comment: 4 pages, 4 figures, Submitted to Phys Rev. Lett. on March 6, 2001;
resubmission on April 2
First Principles Calculation of Elastic Properties of Solid Argon at High Pressures
The density and the elastic stiffness coefficients of fcc solid argon at high
pressures from 1 GPa up to 80 GPa are computed by first-principles
pseudopotential method with plane-wave basis set and the generalized gradient
approximation (GGA). The result is in good agreement with the experimental
result recently obtained with the Brillouin spectroscopy by Shimizu et al.
[Phys. Rev. Lett. 86, 4568 (2001)]. The Cauchy condition was found to be
strongly violated as in the experimental result, indicating large contribution
from non-central many-body force. The present result has made it clear that the
standard density functional method with periodic boundary conditions can be
successfully applied for calculating elastic properties of rare gas solids at
high pressures in contrast to those at low pressures where dispersion forces
are important.Comment: 4 pages, 5 figures, submitted to PR
- …
