502 research outputs found

    Dynamical Screening and Superconducting State in Intercalated Layered Metallochloronitrides

    Full text link
    An essential property of layered systems is the dynamical nature of the screened Coulomb interaction. Low energy collective modes appear as a consequence of the layering and provide for a superconducting-pairing channel in addition to the electron-phonon induced attractive interaction. We show that taking into account this feature allows to explain the high critical temperatures (Tc~26K) observed in recently discovered intercalated metallochloronitrides. The exchange of acoustic plasmons between carriers leads to a significant enhancement of the superconducting critical temperature that is in agreement with the experimental observations

    Electronic Collective Modes and Superconductivity in Layered Conductors

    Full text link
    A distinctive feature of layered conductors is the presence of low-energy electronic collective modes of the conduction electrons. This affects the dynamic screening properties of the Coulomb interaction in a layered material. We study the consequences of the existence of these collective modes for superconductivity. General equations for the superconducting order parameter are derived within the strong-coupling phonon-plasmon scheme that account for the screened Coulomb interaction. Specifically, we calculate the superconducting critical temperature Tc taking into account the full temperature, frequency and wave-vector dependence of the dielectric function. We show that low-energy plasmons may contribute constructively to superconductivity. Three classes of layered superconductors are discussed within our model: metal-intercalated halide nitrides, layered organic materials and high-Tc oxides. In particular, we demonstrate that the plasmon contribution (electronic mechanism) is dominant in the first class of layered materials. The theory shows that the description of so-called ``quasi-two-dimensional superconductors'' cannot be reduced to a purely 2D model, as commonly assumed. While the transport properties are strongly anisotropic, it remains essential to take into account the screened interlayer Coulomb interaction to describe the superconducting state of layered materials.Comment: Final version (minor changes) 14 pages, 6 figure

    Coherent radiation from neutral molecules moving above a grating

    Get PDF
    We predict and study the quantum-electrodynamical effect of parametric self-induced excitation of a molecule moving above the dielectric or conducting medium with periodic grating. In this case the radiation reaction force modulates the molecular transition frequency which results in a parametric instability of dipole oscillations even from the level of quantum or thermal fluctuations. The present mechanism of instability of electrically neutral molecules is different from that of the well-known Smith-Purcell and transition radiation in which a moving charge and its oscillating image create an oscillating dipole. We show that parametrically excited molecular bunches can produce an easily detectable coherent radiation flux of up to a microwatt.Comment: 4 page

    In-Plane and Out-of-Plane Charge Dynamics of High-TcT_c Cuprates

    Full text link
    We propose a theoretical expression for the kk- and ω\omega-dependent dielectric function of a stack of two-dimensional layers coupled along the direction perpendicular to the layers, and discuss some of its properties. We argue that the plasma frequencies at k=0k=0 should correspond to those which are experimentally obtained from optical measurements on {\em e.g.} La1x_{1-x}Srx_{x}CuO4_4 via the ff-sum rule analysis, regardless of the fact that such systems are strongly correlated. We discuss some of the ramifications due to strong anisotropy of the charge transport in these systems, and the lack of coherence for the transport in the direction perpendicular to the layers.Comment: 8 pages, postscript, uuencoded gz-compressed .tar fil

    Spontaneous emission between an unusual pair of plates

    Full text link
    We compute the modification in the spontaneous emission rate for a two-level atom when it is located between two parallel plates of different nature: a perfectly conducting plate (ϵ)(\epsilon\to \infty) and an infinitely permeable one (μ)(\mu\to \infty). We also discuss the case of two infinitely permeable plates. We compare our results with those found in the literature for the case of two perfectly conducting plates.Comment: latex file 4 pages, 4 figure

    Polarons with a twist

    Full text link
    We consider a polaron model where molecular \emph{rotations} are important. Here, the usual hopping between neighboring sites is affected directly by the electron-phonon interaction via a {\em twist-dependent} hopping amplitude. This model may be of relevance for electronic transport in complex molecules and polymers with torsional degrees of freedom, such as DNA, as well as in molecular electronics experiments where molecular twist motion is significant. We use a tight-binding representation and find that very different polaronic properties are already exhibited by a two-site model -- these are due to the nonlinearity of the restoring force of the twist excitations, and of the electron-phonon interaction in the model. In the adiabatic regime, where electrons move in a {\em low}-frequency field of twisting-phonons, the effective splitting of the energy levels increases with coupling strength. The bandwidth in a long chain shows a power-law suppression with coupling, unlike the typical exponential dependence due to linear phonons.Comment: revtex4 source and one eps figur

    Search for supersymmetry with a dominant R-parity violating LQDbar couplings in e+e- collisions at centre-of-mass energies of 130GeV to 172 GeV

    Full text link
    A search for pair-production of supersymmetric particles under the assumption that R-parity is violated via a dominant LQDbar coupling has been performed using the data collected by ALEPH at centre-of-mass energies of 130-172 GeV. The observed candidate events in the data are in agreement with the Standard Model expectation. This result is translated into lower limits on the masses of charginos, neutralinos, sleptons, sneutrinos and squarks. For instance, for m_0=500 GeV/c^2 and tan(beta)=sqrt(2) charginos with masses smaller than 81 GeV/c^2 and neutralinos with masses smaller than 29 GeV/c^2 are excluded at the 95% confidence level for any generation structure of the LQDbar coupling.Comment: 32 pages, 30 figure

    Search for R-Parity Violating Decays of Supersymmetric Particles in e+ee^{+}e^{-} Collisions at Centre-of-Mass Energies near 183 GeV

    Get PDF
    Searches for pair-production of supersymmetric particles under the assumption that R-parity is violated via a single dominant LLEˉLL{\bar E}, LQDˉLQ{\bar D} or UˉDˉDˉ{\bar U} {\bar D} {\bar D} coupling are performed using the data collected by the \ALEPH\ collaboration at centre-of-mass energies of 181--184~\gev. The observed candidate events in the data are in agreement with the Standard Model expectations. Upper limits on the production cross-sections and lower limits on the masses of charginos, sleptons, squarks and sneutrinos are de rived

    Measurement of the W mass in e+ee^+ e^- collisions at 183 GeV

    No full text
    The mass of the W boson is obtained from reconstructed invariant mass distributions in W-pair events. The sample of W pairs is selected from 57 pb1^{-1} collected with the ALEPH detector in 1997 at a centre-of-mass energy of 183 GeV. The invariant mass distributions of reweighted Monte Carlo events are fitted separately to the experimental distributions in the qqbarqqbarqqbarqqbar and all l\nuqqbar channels to give the following W masses: mWhadronic=80.461±0.177(stat.)±0.045(syst.)±0.056(theory)GeV/c2m_{W}^{hadronic} = 80.461 \pm 0.177(stat.) \pm 0.045(syst.) \pm 0.056(theory) GeV/c^2, mWsemileptonic=80.326±0.184(stat.)±0.040(syst.)GeV/c2m_{W}^{semileptonic} = 80.326 \pm 0.184(stat.) \pm 0.040(syst.) GeV/c^2 where the theory error represents the possible effects of final state interactions. The combination of these two measurements, including the LEP energy calibration uncertainty, gives $m_{W} = 80.393 \pm 0.128(stat.)\pm 0.041(syst.) \pm 0.028(theory)\pm 0.021(LEP) GeV/c^2
    corecore