1,455 research outputs found

    Demonstrating that the non orthogonal orbital optimized coupled cluster model converges to full configuration interaction

    Full text link
    Coupled cluster (CC) methods are among the most accurate methods in quantum chemistry. However, the standard CC linear response formulation is not gauge invariant resulting in errors when modelling properties like optical rotation and electron circular dichroism. Including an explicit unitary orbital rotation in the CC Lagrangian makes the linear response function gauge invariant, but the resulting models are not equivalent to full configuration interaction (FCI) in the untruncated limit. In this contribution, such methods are briefly discussed and it is demonstrated that methods using a nonorthogonal orbital transformation, such as nonorthogonal orbital optimized CC (NOCC), can converge to FCI in the untruncated limit. This has been disputed in the literature.Comment: 18 page

    Crossing conditions in coupled cluster theory

    Get PDF
    We derive the crossing conditions at conical intersections between electronic states in coupled cluster theory, and show that if the coupled cluster Jacobian matrix is nondefective, two (three) independent conditions are correctly placed on the nuclear degrees of freedom for an inherently real (complex) Hamiltonian. Calculations using coupled cluster theory on an 21A/31A2 {^{1}}A' / 3 {^{1}}A' conical intersection in hypofluorous acid illustrate the nonphysical artifacts associated with defects at accidental same-symmetry intersections. In particular, the observed intersection seam is folded about a space of the correct dimensionality, indicating that minor modifications to the theory are required for it to provide a correct description of conical intersections in general. We find that an accidental symmetry allowed 11A"/21A"1 {^{1}}A" / 2 {^{1}}A" intersection in hydrogen sulfide is properly described, showing no artifacts as well as linearity of the energy gap to first order in the branching plane.Comment: 9 pages and 4 figure

    Effects of 9-hour time zone changes on fatigue and circadian rhythms of sleep/wake and core temperature

    Get PDF
    Physiological and psychological disruptions caused by transmeridian flights may affect the ability of flight crews to meet operational demands. To study these effects, 9 Royal Norwegian Airforces P3-Orion crewmembers flew from Norway to California (-9 hr), and back (+9 hr). Rectal temperature, heart rate and wrist activity were recorded every 2 min, fatigue and mood were rated every 2 hr during the waking day, and logs were kept of sleep times and ratings. Subjects also completed 4 personality inventories. The time-zone shifts produced negative changes in mood which persisted longer after westward flights. Sleep quality (subjective and objective) and duration were slightly disrupted (more after eastward flights). The circadian rhythms of sleep/wake and temperature both completed the 9-hr delay by day 5 in California, although temperature adjusted more slowly. The size of the delay shift was significantly correlated with scores on extraversion and achievement need personality scales. Response to the 9-hr advance were more variable. One subject exhibited a 15-hr delay in his temperature rhythm, and an atypical sleep/nap pattern. On average, the sleep/wake cycle (but not the temperature rhythm), completed the 9-hr advance by the end of the study. Both rhythms adapted more slowly after the eastward flight

    Short-lived climate forcers from current shipping and petroleum activities in the Arctic

    Get PDF
    Emissions of short-lived climate forcers (SLCF) in the Arctic region are expected to increase, notably from shipping and petroleum extraction. We here discuss changes in atmospheric SLCF concentrations and resulting radiative forcing (RF) from present day shipping and petroleum activities in the Arctic. The three-dimensional chemistry transport OsloCTM2 and a state of the art radiative forcing model are used, based on a coherent dataset of present day Arctic emissions. We find that the net RF of SLCF of shipping in the Arctic region is negative, mainly due to the direct and indirect RF effects of sulphate emissions, while the net RF of SLCF of petroleum extraction is positive, mainly due to the effects of black carbon aerosols in the air and deposited on snow. Strong seasonal variations of the sensitivities to emissions are found. In terms of annual mean values we find that the Arctic sensitivities to SLCF is similar to global average sensitivities. One exception to this is the stronger snow/ice albedo effect from BC emissions

    Regional Aerosol Optical Properties and Radiative Impact of the Extreme Smoke Event in the European Arctic in Spring 2006

    Get PDF
    In spring 2006 a special meteorological situation occurred in the European Arctic region giving record high levels of air pollution. The synoptic situation resulted in extensive transport of pollution predominantly from agricultural fires in Eastern Europe into the Arctic region and record high air-pollution levels were measured at the Zeppelin observatory at Ni-Alesun(78deg 54'N, 11deg 53'E) in the period from 25 April to 12 May. In the present study we investigate the optical properties of the aerosols from this extreme event and we estimate the radiative forcing of this episode. We examine the aerosol optical properties from the source region and into the European Arctic and explore the evolution of the episode and the changes in the optical properties. A number of sites in Eastern Europe, Northern Scandinavia and Svalbard are included in the study. In addition to AOD measurements, we explored lidar measurements from Minsk, ALOMAR (Arctic Lidar Observatory for Middle Atmosphere Research at Andenes) and Ny-Alesund. For the AERONET sites included (Minsk, Toravere, Hornsund) we have further studied the evolution of the aerosol size. Importantly, at Svalbard it is consistency between the AERONET measurements and calculations of single scattering albedo based on aerosol chemical composition. We have found strong agreement between the satellite dally MODIS AOD and the ground-based AOD observations. This agreement is crucial for the radiative forcing calculations. We calculate a strong negative radiative forcing for the most polluted days employing the analysed ground based data, MODIS AOD and a multi-stream model for radiative transfer of solar radiation

    On the state dependency of fast feedback processes in (palaeo) climate sensitivity

    Get PDF
    Palaeo data have been frequently used to determine the equilibrium (Charney) climate sensitivity SaS^a, and - if slow feedback processes (e.g. land ice-albedo) are adequately taken into account - they indicate a similar range as estimates based on instrumental data and climate model results. Most studies implicitly assume the (fast) feedback processes to be independent of the background climate state, e.g., equally strong during warm and cold periods. Here we assess the dependency of the fast feedback processes on the background climate state using data of the last 800 kyr and a conceptual climate model for interpretation. Applying a new method to account for background state dependency, we find Sa=0.61±0.06S^a=0.61\pm0.06 K(Wm2^{-2})1^{-1} using the latest LGM temperature reconstruction and significantly lower climate sensitivity during glacial climates. Due to uncertainties in reconstructing the LGM temperature anomaly, SaS^a is estimated in the range Sa=0.550.95S^a=0.55-0.95 K(Wm2^{-2})1^{-1}.Comment: submitted to Geophysical Research Letter

    Radiative forcing in the 21st century due to ozone changes in the troposphere and the lower stratosphere

    Get PDF
    Radiative forcing due to changes in ozone is expected for the 21st century. An assessment on changes in the tropospheric oxidative state through a model intercomparison ("OxComp'') was conducted for the IPCC Third Assessment Report (IPCC-TAR). OxComp estimated tropospheric changes in ozone and other oxidants during the 21st century based on the "SRES'' A2p emission scenario. In this study we analyze the results of 11 chemical transport models (CTMs) that participated in OxComp and use them as input for detailed radiative forcing calculations. We also address future ozone recovery in the lower stratosphere and its impact on radiative forcing by applying two models that calculate both tropospheric and stratospheric changes. The results of OxComp suggest an increase in global-mean tropospheric ozone between 11.4 and 20.5 DU for the 21st century, representing the model uncertainty range for the A2p scenario. As the A2p scenario constitutes the worst case proposed in IPCC-TAR we consider these results as an upper estimate. The radiative transfer model yields a positive radiative forcing ranging from 0.40 to 0.78 W m(-2) on a global and annual average. The lower stratosphere contributes an additional 7.5-9.3 DU to the calculated increase in the ozone column, increasing radiative forcing by 0.15-0.17 W m(-2). The modeled radiative forcing depends on the height distribution and geographical pattern of predicted ozone changes and shows a distinct seasonal variation. Despite the large variations between the 11 participating models, the calculated range for normalized radiative forcing is within 25%, indicating the ability to scale radiative forcing to global-mean ozone column change

    Aerosol Absorption: Progress Towards Global and Regional Constraints

    Get PDF
    Some aerosols absorb solar radiation, altering cloud properties, atmospheric stability and circulation dynamics, and the water cycle. Here we review recent progress towards global and regional constraints on aerosol absorption from observations and modeling, considering physical properties and combined approaches crucial for understanding the total (natural and anthropogenic) influences of aerosols on the climate. We emphasize developments in black carbon absorption alteration due to coating and ageing, brown carbon characterization, dust composition, absorbing aerosol above cloud, source modeling and size distributions, and validation of high-resolution modeling against a range of observations. Both observations and modeling of total aerosol absorption, absorbing aerosol optical depths and single scattering albedo, as well as the vertical distribution of atmospheric absorption, still suffer from uncertainties and unknowns significant for climate applications. We offer a roadmap of developments needed to bring the field substantially forward
    corecore