39,082 research outputs found
Doppler shift oscillations from a hot line observed by IRIS
We present a detailed investigation of the Doppler shift oscillations in a
hot loop during an M7.1 flare on 2014 October 27 observed by the Interface
Region Imaging Spectrograph. The periodic oscillations are observed in the
Doppler shift of Fe XXI 1354.09 A (logT~7.05), and the dominant period is about
3.1 minutes. However, such 3.1-min oscillations are not found in the
line-integrated intensity of Fe XXI 1354.09 A, AIA EUV fluxes, or microwave
emissions. SDO/AIA and Hinode/XRT imaging observations indicate that the
Doppler shift oscillations locate at the hot loop-top region (> 11MK).
Moreover, the differential emission measure (DEM) results show that the
temperature is increasing rapidly when the Doppler shift oscillates, but the
number density does not exhibit the corresponding increases nor oscillations,
implying that the flare loop is likely to oscillate in an incompressible mode.
All these facts suggest that the Doppler shift oscillations at the shorter
period are most likely the standing kink oscillations in a flare loop.
Meanwhile, a longer period of about 10 minutes is identified in the time series
of Doppler shift and line-integrated intensity, GOES SXR fluxes and AIA EUV
light curves, indicating the periodic energy release in this flare, which may
be caused by a slow mode wave.Comment: 24 pages, 9 figures, accepted for publication in The Astrophysical
Journa
Pre-flare coronal dimmings
In this paper, we focus on the pre-flare coronal dimmings. We report our
multiwavelength observations of the GOES X1.6 solar flare and the accompanying
halo CME produced by the eruption of a sigmoidal magnetic flux rope (MFR) in
NOAA active region (AR) 12158 on 2014 September 10. The eruption was observed
by the Atmospheric Imaging Assembly (AIA) aboard the Solar Dynamic Observatory
(SDO). The photospheric line-of-sight magnetograms were observed by the
Helioseismic and Magnetic Imager (HMI) aboard SDO. The soft X-ray (SXR) fluxes
were recorded by the GOES spacecraft. The halo CME was observed by the white
light coronagraphs of the Large Angle Spectroscopic Coronagraph (LASCO) aboard
SOHO.} {About 96 minutes before the onset of flare/CME, narrow pre-flare
coronal dimmings appeared at the two ends of the twisted MFR. They extended
very slowly with their intensities decreasing with time, while their apparent
widths (89 Mm) nearly kept constant. During the impulsive and decay phases
of flare, typical fanlike twin dimmings appeared and expanded with much larger
extent and lower intensities than the pre-flare dimmings. The percentage of 171
{\AA} intensity decrease reaches 40\%. The pre-flare dimmings are most striking
in 171, 193, and 211 {\AA} with formation temperatures of 0.62.5 MK. The
northern part of the pre-flare dimmings could also be recognized in 131 and 335
{\AA}.} To our knowledge, this is the first detailed study of pre-flare coronal
dimmings, which can be explained by the density depletion as a result of the
gradual expansion of the coronal loop system surrounding the MFR during the
slow rise of the MFR.Comment: 6 pages, 8 figures, to be accepted for publication by A&
High-Efficient Parallel CAVLC Encoders on Heterogeneous Multicore Architectures
This article presents two high-efficient parallel realizations of the context-based adaptive variable length coding (CAVLC) based on heterogeneous multicore processors. By optimizing the architecture of the CAVLC encoder, three kinds of dependences are eliminated or weaken, including the context-based data dependence, the memory accessing dependence and the control dependence. The CAVLC pipeline is divided into three stages: two scans, coding, and lag packing, and be implemented on two typical heterogeneous multicore architectures. One is a block-based SIMD parallel CAVLC encoder on multicore stream processor STORM. The other is a component-oriented SIMT parallel encoder on massively parallel architecture GPU. Both of them exploited rich data-level parallelism. Experiments results show that compared with the CPU version, more than 70 times of speedup can be obtained for STORM and over 50 times for GPU. The implementation of encoder on STORM can make a real-time processing for 1080p @30fps and GPU-based version can satisfy the requirements for 720p real-time encoding. The throughput of the presented CAVLC encoders is more than 10 times higher than that of published software encoders on DSP and multicore platforms
Spin-Polarized Transport in Ferromagnet-Marginal Fermi Liquid Systems
Spin-polarized transport through a marginal Fermi liquid (MFL) which is
connected to two noncollinear ferromagnets via tunnel junctions is discussed in
terms of the nonequilibrium Green function approach. It is found that the
current-voltage characteristics deviate obviously from the ohmic behavior, and
the tunnel current increases slightly with temperature, in contrast to those of
the system with a Fermi liquid. The tunnel magnetoresistance (TMR) is observed
to decay exponentially with increasing the bias voltage, and to decrease slowly
with increasing temperature. With increasing the coupling constant of the MFL,
the current is shown to increase linearly, while the TMR is found to decay
slowly. The spin-valve effect is observed.Comment: 5 pages, 6 figures, Phys. Rev. B 71, 064412 (2005
Dirac-Schr\"odinger equation for quark-antiquark bound states and derivation of its interaction kerne
The four-dimensional Dirac-Schr\"odinger equation satisfied by
quark-antiquark bound states is derived from Quantum Chromodynamics. Different
from the Bethe-Salpeter equation, the equation derived is a kind of first-order
differential equations of Schr\"odinger-type in the position space. Especially,
the interaction kernel in the equation is given by two different closed
expressions. One expression which contains only a few types of Green's
functions is derived with the aid of the equations of motion satisfied by some
kinds of Green's functions. Another expression which is represented in terms of
the quark, antiquark and gluon propagators and some kinds of proper vertices is
derived by means of the technique of irreducible decomposition of Green's
functions. The kernel derived not only can easily be calculated by the
perturbation method, but also provides a suitable basis for nonperturbative
investigations. Furthermore, it is shown that the four-dimensinal
Dirac-Schr\"odinger equation and its kernel can directly be reduced to rigorous
three-dimensional forms in the equal-time Lorentz frame and the
Dirac-Schr\"odinger equation can be reduced to an equivalent
Pauli-Schr\"odinger equation which is represented in the Pauli spinor space. To
show the applicability of the closed expressions derived and to demonstrate the
equivalence between the two different expressions of the kernel, the t-channel
and s-channel one gluon exchange kernels are chosen as an example to show how
they are derived from the closed expressions. In addition, the connection of
the Dirac-Schr\"odinger equation with the Bethe-Salpeter equation is discussed
Spin gap behavior in CuScGeO by Sc nuclear magnetic resonance
We report the results of a Sc nuclear magnetic resonance (NMR) study
on the quasi-one-dimensional compound CuScGeO at
temperatures between 4 and 300 K. This material has been a subject of current
interest due to indications of spin gap behavior. The temperature-dependent NMR
shift exhibits a character of low-dimensional magnetism with a negative broad
maximum at 170 K. Below , the NMR shifts and
spin lattice relaxation rates clearly indicate activated responses, confirming
the existence of a spin gap in CuScGe% O. The experimental
NMR data can be well fitted to the spin dimer model, yielding a spin gap value
of about 275 K which is close to the 25 meV peak found in the inelastic neutron
scattering measurement. A detailed analysis further points out that the nearly
isolated dimer picture is proper for the understanding of spin gap nature in
CuScGeO.Comment: 4 pages, 6 figures, submitted to Phys. Rev.
- …
