62,537 research outputs found

    A smart vision sensor for detecting risk factors of a toddler's fall in a home environment

    Get PDF
    This paper presents a smart vision sensor for detecting risk factors of a toddler's fall in an indoor home environment assisting parents' supervision to prevent fall injuries. We identified the risk factors by analyzing real fall injury stories and referring to a related organization's suggestions to prevent falls. In order to detect the risk factors using computer vision, two major image processing methods, clutter detection and toddler tracking, were studied with using only one commercial web-camera. For practical purposes, there is no need for a toddler to wear any sensors or markers. The algorithms for detection have been developed, implemented and tested

    DK,lνD \rightarrow K, l \nu Semileptonic Decay Scalar Form Factor and Vcs|V_{cs}| from Lattice QCD

    Full text link
    We present a new study of D semileptonic decays on the lattice which employs the Highly Improved Staggered Quark (HISQ) action for both the charm and the light valence quarks. We work with MILC unquenched Nf=2+1N_f = 2 + 1 lattices and determine the scalar form factor f0(q2)f_0(q^2) for DK,lνD \rightarrow K, l \nu semileptonic decays. The form factor is obtained from a scalar current matrix element that does not require any operator matching. We develop a new approach to carrying out chiral/continuum extrapolations of f0(q2)f_0(q^2). The method uses the kinematic "zz" variable instead of q2q^2 or the kaon energy EKE_K and is applicable over the entire physical q2q^2 range. We find f0DK(0)f+DK(0)=0.747(19)f^{D \rightarrow K}_0(0) \equiv f^{D \rightarrow K}_+(0) = 0.747(19) in the chiral plus continuum limit and hereby improve the theory error on this quantity by a factor of \sim4 compared to previous lattice determinations. Combining the new theory result with recent experimental measurements of the product f+DK(0)Vcsf^{D \rightarrow K}_+(0) * |V_{cs}| from BaBar and CLEO-c leads to the most precise direct determination of the CKM matrix element Vcs|V_{cs}| to date, Vcs=0.961(11)(24)|V_{cs}| = 0.961(11)(24), where the first error comes from experiment and the second is the lattice QCD theory error. We calculate the ratio f+DK(0)/fDsf^{D \rightarrow K}_+(0)/f_{D_s} and find 2.986±0.0872.986 \pm 0.087 GeV1^{-1} and show that this agrees with experiment.Comment: 23 pages, 31 figures, 11 tables. Added a paragraph in sction VII, and updated with PDG 2010 instead of PDG 200

    The rate of period change in DAV stars

    Full text link
    Grids of DAV star models are evolved by \texttt{WDEC}, taking the element diffusion effect into account. The grid parameters are hydrogen mass log(MH/MM_{H}/M_{*}), helium mass log(MHe/MM_{He}/M_{*}), stellar mass MM_{\rm *}, and effective temperature TeffT_{\rm eff} for DAV stars. The core compositions are from white dwarf models evolved by \texttt{MESA}. Therefore, those DAV star models evolved by \texttt{WDEC} have historically viable core compositions. Based on those DAV star models, we studied the rate of period change (P˙(k)\dot{P}(k)) for different values of H, He, MM_{\rm *}, and TeffT_{\rm eff}. The results are consistent with previous work. Two DAV stars G117-B15A and R548 have been observed around forty years. The rates of period change of two large-amplitude modes were obtained through O-C method. We did asteroseismological study on the two DAV stars and then obtained a best-fitting model for each star. Based on the two best-fitting models, the mode identifications (ll, kk) of the observed modes for G117-B15A and R548 are consistent with previous work. Both the observed modes and the observed P˙\dot{P}s can be fitted by calculated ones. The results indicate that our method of evolving DAV star models is feasible.Comment: 20pages, 12 figures, 6 tables, accepted by RAA on 3/18, 201

    Meson and Baryon dispersion relations with Brillouin fermions

    Get PDF
    We study the dispersion relations of mesons and baryons built from Brillouin quarks on one N_f=2 gauge ensemble provided by QCDSF. For quark masses up to the physical strange quark mass, there is hardly any improvement over the Wilson discretization, if either action is link-smeared and tree-level clover improved. For quark masses in the range of the physical charm quark mass, the Brillouin action still shows a perfect relativistic behavior, while the Wilson action induces severe cut-off effects. As an application we determine the masses of the \Omega_c^0, \Omega_{cc}^+ and \Omega_{ccc}^{++} baryons on that ensemble.Comment: 16 pages, 9 figures, 4 tables; v2: one Reference added, matches published versio

    Update: Precision D_s decay constant from full lattice QCD using very fine lattices

    Full text link
    We update our previous determination of both the decay constant and the mass of the DsD_s meson using the Highly Improved Staggered Quark formalism. We include additional results at two finer values of the lattice spacing along with improved determinations of the lattice spacing and improved tuning of the charm and strange quark masses. We obtain mDsm_{D_s} = 1.9691(32) GeV, in good agreement with experiment, and fDsf_{D_s} = 0.2480(25) GeV. Our result for fDsf_{D_s} is 1.6σ\sigma lower than the most recent experimental average determined from the DsD_s leptonic decay rate and using VcsV_{cs} from CKM unitarity. Combining our fDsf_{D_s} with the experimental rate we obtain a direct determination of Vcs=1.010(22)V_{cs} = 1.010(22), or alternatively 0.990+0.0130.0160.990 {+0.013 \atop -0.016} using a probability distribution for statistical errors for this quantity which vanishes above 1. We also include an accurate prediction of the decay constant of the ηc\eta_c, fηcf_{\eta_c} = 0.3947(24) GeV, as a calibration point for other lattice calculations.Comment: 24 pages, 20 figures. Updated to include new experimental results from BaBar, new experimental averages from HFAG and consequent discussion of theory/experiment comparison. Other minor typographical changes. Version accepted by Phys. Rev.

    Vision-based toddler tracking at home

    Get PDF
    This paper presents a vision-based toddler tracking system for detecting risk factors of a toddler's fall within the home environment. The risk factors have environmental and behavioral aspects and the research in this paper focuses on the behavioral aspects. Apart from common image processing tasks such as background subtraction, the vision-based toddler tracking involves human classification, acquisition of motion and position information, and handling of regional merges and splits. The human classification is based on dynamic motion vectors of the human body. The center of mass of each contour is detected and connected with the closest center of mass in the next frame to obtain position, speed, and directional information. This tracking system is further enhanced by dealing with regional merges and splits due to multiple object occlusions. In order to identify the merges and splits, two directional detections of closest region centers are conducted between every two successive frames. Merges and splits of a single object due to errors in the background subtraction are also handled. The tracking algorithms have been developed, implemented and tested
    corecore