684 research outputs found

    The use of small angle neutron scattering with contrast matching and variable adsorbate partial pressures in the study of porosity in activated carbons

    Get PDF
    The porosity of a typical activated carbon is investigated with small angle neutron scattering (SANS), using the contrast matching technique, by changing the hydrogen/deuterium content of the absorbed liquid (toluene) to extract the carbon density at different scattering vector (Q) values and by measuring the p/p0 dependence of the SANS, using fully deuterated toluene. The contrast matching data shows that the apparent density is Q-dependent, either because of pores opening near the carbon surface during the activation processor or changes in D-toluene density in nanoscale pores. For each p/p0 value, evaluation of the Porod Invariant yields the fraction of empty pores. Hence, comparison with the adsorption isotherm shows that the fully dry powder undergoes densification when liquid is added. An algebraic function is developed to fit the SANS signal at each p/p0 value hence yielding the effective Kelvin radii of the liquid surfaces as a function of p/p0. These values, when compared with the Kelvin Equation, show that the resultant surface tension value is accurate for the larger pores but tends to increase for small (nanoscale) pores. The resultant pore size distribution is less model-dependent than for the traditional methods of analyzing the adsorption isotherms

    Chaotic Phenomenon in Nonlinear Gyrotropic Medium

    Full text link
    Nonlinear gyrotropic medium is a medium, whose natural optical activity depends on the intensity of the incident light wave. The Kuhn's model is used to study nonlinear gyrotropic medium with great success. The Kuhn's model presents itself a model of nonlinear coupled oscillators. This article is devoted to the study of the Kuhn's nonlinear model. In the first paragraph of the paper we study classical dynamics in case of weak as well as strong nonlinearity. In case of week nonlinearity we have obtained the analytical solutions, which are in good agreement with the numerical solutions. In case of strong nonlinearity we have determined the values of those parameters for which chaos is formed in the system under study. The second paragraph of the paper refers to the question of the Kuhn's model integrability. It is shown, that at the certain values of the interaction potential this model is exactly integrable and under certain conditions it is reduced to so-called universal Hamiltonian. The third paragraph of the paper is devoted to quantum-mechanical consideration. It shows the possibility of stochastic absorption of external field energy by nonlinear gyrotropic medium. The last forth paragraph of the paper is devoted to generalization of the Kuhn's model for infinite chain of interacting oscillators

    Geometry dominated fluid adsorption on sculptured substrates

    Full text link
    Experimental methods allow the shape and chemical composition of solid surfaces to be controlled at a mesoscopic level. Exposing such structured substrates to a gas close to coexistence with its liquid can produce quite distinct adsorption characteristics compared to that occuring for planar systems, which may well play an important role in developing technologies such as super-repellent surfaces or micro-fluidics. Recent studies have concentrated on adsorption of liquids at rough and heterogeneous substrates and the characterisation of nanoscopic liquid films. However, the fundamental effect of geometry has hardly been addressed. Here we show that varying the shape of the substrate can exert a profound influence on the adsorption isotherms allowing us to smoothly connect wetting and capillary condensation through a number of novel and distinct examples of fluid interfacial phenomena. This opens the possibility of tailoring the adsorption properties of solid substrates by sculpturing their surface shape.Comment: 6 pages, 4 figure

    Adsorption hysteresis and capillary condensation in disordered porous solids: a density functional study

    Full text link
    We present a theoretical study of capillary condensation of fluids adsorbed in mesoporous disordered media. Combining mean-field density functional theory with a coarse-grained description in terms of a lattice-gas model allows us to investigate both the out-of-equilibrium (hysteresis) and the equilibrium behavior. We show that the main features of capillary condensation in disordered solids result from the appearance of a complex free-energy landscape with a large number of metastable states. We detail the numerical procedures for finding these states, and the presence or absence of transitions in the thermodynamic limit is determined by careful finite-size studies.Comment: 30 pages, 18 figures. To appear in J. Phys.: Condens. Matte

    Density functional formalism in the canonical ensemble

    Full text link
    Density functional theory, when applied to systems with T0T\neq 0, is based on the grand canonical extension of the Hohenberg-Kohn-Sham theorem due to Mermin (HKSM theorem). While a straightforward canonical ensemble generalization fails, work in nanopore systems could certainly benefit from such extension. We show that, if the asymptotic behaviour of the canonical distribution functions is taken into account, the HKSM theorem can be extended to the canonical ensemble. We generate NN-modified correlation and distribution functions hierarchies and prove that, if they are employed, either a modified external field or the density profiles can be indistinctly used as independent variables. We also write down the NN% -modified free energy functional and prove that its minimum is reached when the equilibrium values of the new hierarchy are used. This completes the extension of the HKSM theorem.Comment: revtex, to be submitted to Phys. Rev. Let

    Capillary condensation in disordered porous materials: hysteresis versus equilibrium behavior

    Full text link
    We study the interplay between hysteresis and equilibrium behavior in capillary condensation of fluids in mesoporous disordered materials via a mean-field density functional theory of a disordered lattice-gas model. The approach reproduces all major features observed experimentally. We show that the simple van der Waals picture of metastability fails due to the appearance of a complex free-energy landscape with a large number of metastable states. In particular, hysteresis can occur both with and without an underlying equilibrium transition, thermodynamic consistency is not satisfied along the hysteresis loop, and out-of-equilibrium phase transitions are possible.Comment: 4 pages, 4 figure
    corecore