684 research outputs found
The use of small angle neutron scattering with contrast matching and variable adsorbate partial pressures in the study of porosity in activated carbons
The porosity of a typical activated carbon is investigated with small angle neutron scattering (SANS), using the contrast matching technique, by changing the hydrogen/deuterium content of the absorbed liquid (toluene) to extract the carbon density at different scattering vector (Q) values and by measuring the p/p0 dependence of the SANS, using fully deuterated toluene. The contrast matching data shows that the apparent density is Q-dependent, either because of pores opening near the carbon surface during the activation processor or changes in D-toluene density in nanoscale pores. For each p/p0 value, evaluation of the Porod Invariant yields the fraction of empty pores. Hence, comparison with the adsorption isotherm shows that the fully dry powder undergoes densification when liquid is added. An algebraic function is developed to fit the SANS signal at each p/p0 value hence yielding the effective Kelvin radii of the liquid surfaces as a function of p/p0. These values, when compared with the Kelvin Equation, show that the resultant surface tension value is accurate for the larger pores but tends to increase for small (nanoscale) pores. The resultant pore size distribution is less model-dependent than for the traditional methods of analyzing the adsorption isotherms
Chaotic Phenomenon in Nonlinear Gyrotropic Medium
Nonlinear gyrotropic medium is a medium, whose natural optical activity
depends on the intensity of the incident light wave. The Kuhn's model is used
to study nonlinear gyrotropic medium with great success. The Kuhn's model
presents itself a model of nonlinear coupled oscillators. This article is
devoted to the study of the Kuhn's nonlinear model. In the first paragraph of
the paper we study classical dynamics in case of weak as well as strong
nonlinearity. In case of week nonlinearity we have obtained the analytical
solutions, which are in good agreement with the numerical solutions. In case of
strong nonlinearity we have determined the values of those parameters for which
chaos is formed in the system under study. The second paragraph of the paper
refers to the question of the Kuhn's model integrability. It is shown, that at
the certain values of the interaction potential this model is exactly
integrable and under certain conditions it is reduced to so-called universal
Hamiltonian. The third paragraph of the paper is devoted to quantum-mechanical
consideration. It shows the possibility of stochastic absorption of external
field energy by nonlinear gyrotropic medium. The last forth paragraph of the
paper is devoted to generalization of the Kuhn's model for infinite chain of
interacting oscillators
Geometry dominated fluid adsorption on sculptured substrates
Experimental methods allow the shape and chemical composition of solid
surfaces to be controlled at a mesoscopic level. Exposing such structured
substrates to a gas close to coexistence with its liquid can produce quite
distinct adsorption characteristics compared to that occuring for planar
systems, which may well play an important role in developing technologies such
as super-repellent surfaces or micro-fluidics. Recent studies have concentrated
on adsorption of liquids at rough and heterogeneous substrates and the
characterisation of nanoscopic liquid films. However, the fundamental effect of
geometry has hardly been addressed. Here we show that varying the shape of the
substrate can exert a profound influence on the adsorption isotherms allowing
us to smoothly connect wetting and capillary condensation through a number of
novel and distinct examples of fluid interfacial phenomena. This opens the
possibility of tailoring the adsorption properties of solid substrates by
sculpturing their surface shape.Comment: 6 pages, 4 figure
Adsorption hysteresis and capillary condensation in disordered porous solids: a density functional study
We present a theoretical study of capillary condensation of fluids adsorbed
in mesoporous disordered media. Combining mean-field density functional theory
with a coarse-grained description in terms of a lattice-gas model allows us to
investigate both the out-of-equilibrium (hysteresis) and the equilibrium
behavior. We show that the main features of capillary condensation in
disordered solids result from the appearance of a complex free-energy landscape
with a large number of metastable states. We detail the numerical procedures
for finding these states, and the presence or absence of transitions in the
thermodynamic limit is determined by careful finite-size studies.Comment: 30 pages, 18 figures. To appear in J. Phys.: Condens. Matte
Density functional formalism in the canonical ensemble
Density functional theory, when applied to systems with , is based
on the grand canonical extension of the Hohenberg-Kohn-Sham theorem due to
Mermin (HKSM theorem). While a straightforward canonical ensemble
generalization fails, work in nanopore systems could certainly benefit from
such extension. We show that, if the asymptotic behaviour of the canonical
distribution functions is taken into account, the HKSM theorem can be extended
to the canonical ensemble. We generate -modified correlation and
distribution functions hierarchies and prove that, if they are employed, either
a modified external field or the density profiles can be indistinctly used as
independent variables. We also write down the % -modified free energy
functional and prove that its minimum is reached when the equilibrium values of
the new hierarchy are used. This completes the extension of the HKSM theorem.Comment: revtex, to be submitted to Phys. Rev. Let
Capillary condensation in disordered porous materials: hysteresis versus equilibrium behavior
We study the interplay between hysteresis and equilibrium behavior in
capillary condensation of fluids in mesoporous disordered materials via a
mean-field density functional theory of a disordered lattice-gas model. The
approach reproduces all major features observed experimentally. We show that
the simple van der Waals picture of metastability fails due to the appearance
of a complex free-energy landscape with a large number of metastable states. In
particular, hysteresis can occur both with and without an underlying
equilibrium transition, thermodynamic consistency is not satisfied along the
hysteresis loop, and out-of-equilibrium phase transitions are possible.Comment: 4 pages, 4 figure
- …
