39 research outputs found
Limits on diffuse fluxes of high energy extraterrestrial neutrinos with the AMANDA-B10 detector
Data from the AMANDA-B10 detector taken during the austral winter of 1997
have been searched for a diffuse flux of high energy extraterrestrial
muon-neutrinos, as predicted from, e.g., the sum of all active galaxies in the
universe. This search yielded no excess events above those expected from the
background atmospheric neutrinos, leading to upper limits on the
extraterrestrial neutrino flux. For an assumed E^-2 spectrum, a 90% classical
confidence level upper limit has been placed at a level E^2 Phi(E) = 8.4 x
10^-7 GeV cm^-2 s^-1 sr^-1 (for a predominant neutrino energy range 6-1000 TeV)
which is the most restrictive bound placed by any neutrino detector. When
specific predicted spectral forms are considered, it is found that some are
excluded.Comment: Submitted to Physical Review Letter
Search for Point Sources of High Energy Neutrinos with AMANDA
This paper describes the search for astronomical sources of high-energy
neutrinos using the AMANDA-B10 detector, an array of 302 photomultiplier tubes,
used for the detection of Cherenkov light from upward traveling
neutrino-induced muons, buried deep in ice at the South Pole. The absolute
pointing accuracy and angular resolution were studied by using coincident
events between the AMANDA detector and two independent telescopes on the
surface, the GASP air Cherenkov telescope and the SPASE extensive air shower
array. Using data collected from April to October of 1997 (130.1 days of
livetime), a general survey of the northern hemisphere revealed no
statistically significant excess of events from any direction. The sensitivity
for a flux of muon neutrinos is based on the effective detection area for
through-going muons. Averaged over the Northern sky, the effective detection
area exceeds 10,000 m^2 for E_{mu} ~ 10 TeV. Neutrinos generated in the
atmosphere by cosmic ray interactions were used to verify the predicted
performance of the detector. For a source with a differential energy spectrum
proportional to E_{nu}^{-2} and declination larger than +40 degrees, we obtain
E^2(dN_{nu}/dE) <= 10^{-6}GeVcm^{-2}s^{-1} for an energy threshold of 10 GeV.Comment: 46 pages, 22 figures, 4 tables, submitted to Ap.
Physics Results from the AMANDA Neutrino Detector
In the winter season of 2000, the AMANDA (Antarctic Muon And Neutrino Detector Array) detector was completed to its final state. We report on major physics results obtained from the AMANDA-B10 detector, as well as initial results of the full AMANDA-II detector
Предварительное исследование применения системы спектрального регулирования для ТВС реактора ВВЭР-1000
Повышение топливных характеристик ядерных реакторов за счет применения концепции управления спектральным сдвигом (SSC) вместо традиционных методов, основанных на поглощении, является многообещающим подходом к снижению стоимости топливного цикла и увеличению использования топливных ресурсов (U, Pu). В данной работе было проведено исследование применения химического метода SSC для модели топливной сборки ВВЭР-1000 с низкообогащенным ураном, в которой контроль реактивности осуществляется путем изменения доли D2O относительно легководного замедлителя (D2O/H2O), и сравнение с поглощающими материалами, в которых содержится 600 ppm H3BO3 и 4,0 мас.% Gd2O3
Search for neutrinos from dark matter self-annihilations in the center of the Milky Way with 3 years of IceCube/DeepCore
IceCube: A multipurpose neutrino telescope
IceCube is a new high-energy neutrino telescope which will be coming online in the near future. IceCube will be capable of measuring fluxes of all three flavors of neutrino, and its peak neutrino energy sensitivity will be in the TeV-PeV range. Here, after a brief description of the detector, we describe its anticipated performance with a selection of physics topics: supernovae, extraterrestrial diffuse and point sources of neutrinos, gamma-ray bursts, neutrinos from WIMP annihilation, and cosmic ray composition. \ua9 2008 The Physical Society of Japan
Results from the AMANDA detector
The Antarctic Muon And Neutrino Detector Array (AMANDA) is a high-energy neutrino telescope based at the geographic South Pole. It is a lattice of photo-multiplier tubes buried deep in the polar ice, which is used as interaction and detection medium. The primary goal of this detector is the observation of astronomical sources of high-energy neutrinos. This paper shows the latest results of the search for a diffuse flux of extraterrestrial \u3bd\u3bcs with energies between 1011 eV and 10 18 eV, \u3bd\u3bcs emitted from point sources and \u3bd\u3bcs from dark matter annihilation in the Earth and the Sun
Selected recent results from AMANDA
We present a selection of results based on data taken in 1997 with the 302-PMT Antarctic Muon and Neutrino Detector Array-B10 ("AMANDA-B10") array. Atmospheric neutrinos created in the northern hemisphere are observed indirectly through their charged current interactions which produce relativistic, Cherenkov-light-emitting upgoing muons in the South Pole ice cap. The reconstructed angular distribution of these events is in good agreement with expectation and demonstrates the viability of this ice-based device as a neutrino telescope. Studies of nearly vertical upgoing muons limit the available parameter space for WIMP dark matter under the assumption that WIMPS are trapped in the earth's gravitational potential well and annihilate with one another near the earth's center.</p
