1,666 research outputs found

    Enhancement of the upper critical field in codoped iron-arsenic high-temperature superconductors

    Full text link
    We present the first study of codoped iron-arsenide superconductors of the 122 family (Sr/Ba)_(1-x)K_xFe_(2-y)Co_yAs_2 with the purpose to increase the upper critical field H_c2 compared to single doped (Sr/Ba)Fe_2As_2 materials. H_c2 was investigated by measuring the magnetoresistance in high pulsed magnetic fields up to 64 T. We find, that H_c2 extrapolated to T = 0 is indeed enhanced significantly to ~ 90 T for polycrystalline samples of Ba_0.55K_0.45Fe_1.95Co_0.05As_2 compared to ~75 T for Ba_0.55K_0.45Fe_2As_2 and BaFe_1.8Co_0.2As_2 single crystals. Codoping thus is a promising way for the systematic optimization of iron-arsenic based superconductors for magnetic-field and high-current applications.Comment: 7 pages, 5 figures, submitted to Journal of Applied Physic

    Possible re-entrant superconductivity in EuFe2As2 under pressure

    Full text link
    We studied the temperature-pressure phase diagram of EuFe2As2 by measurements of the electrical resistivity. The antiferromagnetic spin-density-wave transition at T_0 associated with the FeAs-layers is continuously suppressed with increasing pressure, while the antiferromagnetic ordering temperature of the Eu 2+ moments seems to be nearly pressure independent up to 2.6 GPa. Above 2 GPa a sharp drop of the resistivity, \rho(T), indicates the onset of superconductivity at T_c \approx 29.5 K. Surprisingly, on further reducing the temperature \rho(T) is increasing again and exhibiting a maximum caused by the ordering of the Eu 2+ moments, a behavior which is reminiscent of re-entrant superconductivity as it is observed in the ternary Chevrel phases or in the rare-earth nickel borocarbides

    Two Superconducting Phases in CeRh_1-xIr_xIn_5

    Full text link
    Pressure studies of CeRh_1-xIr_xIn_5 indicate two superconducting phases as a function of x, one with T_c >= 2 K for x < 0.9 and the other with T_c < 1.2 K for x > 0.9. The higher T_c phase, phase-1, emerges in proximity to an antiferromagnetic quantum-critical point; whereas, Cooper pairing in the lower T_c phase-2 is inferred to arise from fluctuations of a yet to be found magnetic state. The T-x-P phase diagram of CeRh_1-xIr_xIn_5, though qualitatively similar, is distinctly different from that of CeCu_2(Si_1-xGe_x)_2.Comment: 5 pages, 3 figure

    Pressure-induced change of the pairing symmetry in superconducting CeCu2Si2

    Full text link
    Low-temperature (T) heat-capacity measurements under hydrostatic pressure of up to p=2.1 GPa have been performed on single-crystalline CeCu2Si2. A broad superconducting (SC) region exists in the T-p phase diagram. In the low-pressure region antiferromagnetic spin fluctuations and in the high-pressure region valence fluctuations had previously been proposed to mediate Cooper pairing. We could identify these two distinct SC regions. We found different thermodynamic properties of the SC phase in both regions, supporting the proposal that different mechanisms might be implied in the formation of superconductivity.Comment: 4 pages, 5 figure

    Evidence for time-reversal symmetry breaking in superconducting PrPt4Ge12

    Full text link
    Zero and longitudinal field muon spin rotation (muSR) experiments were performed on the superconductors PrPt4Ge12 and LaPt4Ge12. In PrPt4Ge12 below Tc a spontaneous magnetization with a temperature variation resembling that of the superfluid density appears. This observation implies time-reversal symmetry (TRS) breaking in PrPt4Ge12 below Tc = 7.9 K. This remarkably high Tc for an anomalous superconductor and the weak and gradual change of Tc and of the related specific heat anomaly upon La substitution in La_(1-x)Pr_xPt_4Ge_(12) suggests that the TRS breaking is due to orbital degrees of freedom of the Cooper pairs.Comment: To appear in Phys. Rev. B. 5 pages, 3 figure

    Ising-type Magnetic Anisotropy in CePd2_2As2_2

    Full text link
    We investigated the anisotropic magnetic properties of CePd2_2As2_2 by magnetic, thermal and electrical transport studies. X-ray diffraction confirmed the tetragonal ThCr2_2Si2_2-type structure and the high-quality of the single crystals. Magnetisation and magnetic susceptibility data taken along the different crystallographic directions evidence a huge crystalline electric field (CEF) induced Ising-type magneto-crystalline anisotropy with a large cc-axis moment and a small in-plane moment at low temperature. A detailed CEF analysis based on the magnetic susceptibility data indicates an almost pure ±5/2\langle\pm5/2 \rvert CEF ground-state doublet with the dominantly ±3/2\langle\pm3/2 \rvert and the ±1/2\langle\pm1/2 \rvert doublets at 290 K and 330 K, respectively. At low temperature, we observe a uniaxial antiferromagnetic (AFM) transition at TN=14.7T_N=14.7 K with the crystallographic cc-direction being the magnetic easy-axis. The magnetic entropy gain up to TNT_N reaches almost Rln2R\ln2 indicating localised 4f4f-electron magnetism without significant Kondo-type interactions. Below TNT_N, the application of a magnetic field along the cc-axis induces a metamagnetic transition from the AFM to a field-polarised phase at μ0Hc0=0.95\mu_0H_{c0}=0.95 T, exhibiting a text-book example of a spin-flip transition as anticipated for an Ising-type AFM.Comment: 9 Pages, 8 figure

    Superconductivity in the New Platinum Germanides MPt4Ge12 (M = Rare-earth and Alkaline-earth Metals) with Filled Skutterudite Structure

    Full text link
    New germanium-platinum compounds with the filled-skutterudite crystal structure were synthesized. The structure and composition were investigated by X-ray diffraction and microprobe analysis. Magnetic susceptibility, specific heat, and electrical resistivity measurements evidence superconductivity in LaPt4Ge12 and PrPt4Ge12 below 8.3K. The parameters of the normal and superconducting states were established. Strong coupling and a crystal electric field singlet groundstate is found for the Pr compound. Electronic structure calculations show a large density of states at the Fermi level. Similar behavior with lower T_c was observed for SrPt4Ge12 and BaPt4Ge12.Comment: RevTeX, 4 figures, submitted to Physical Review Letters July 12, 200

    Charge-Doping driven Evolution of Magnetism and non-Fermi-Liquid Behavior in the Filled Skutterudite CePt4Ge12-xSbx

    Full text link
    The filled-skutterudite compound CePt4Ge12 is situated close to the border between intermediate-valence of Ce and heavy-fermion behavior. Substitution of Ge by Sb drives the system into a strongly correlated and ultimately upon further increasing the Sb concentration into an antiferromagnetically ordered state. Our experiments evidence a delicate interplay of emerging Kondo physics and the formation of a local 4f moment. An extended non-Fermi-liquid region, which can be understood in the framework of a Kondo-disorder model, is observed. Band-structure calculations support the conclusion that the physical properties are governed by the interplay of electron supply via Sb substitution and the concomitant volume effects.Comment: 5 pages, 3 Figur
    corecore