1,666 research outputs found
Enhancement of the upper critical field in codoped iron-arsenic high-temperature superconductors
We present the first study of codoped iron-arsenide superconductors of the
122 family (Sr/Ba)_(1-x)K_xFe_(2-y)Co_yAs_2 with the purpose to increase the
upper critical field H_c2 compared to single doped (Sr/Ba)Fe_2As_2 materials.
H_c2 was investigated by measuring the magnetoresistance in high pulsed
magnetic fields up to 64 T. We find, that H_c2 extrapolated to T = 0 is indeed
enhanced significantly to ~ 90 T for polycrystalline samples of
Ba_0.55K_0.45Fe_1.95Co_0.05As_2 compared to ~75 T for Ba_0.55K_0.45Fe_2As_2 and
BaFe_1.8Co_0.2As_2 single crystals. Codoping thus is a promising way for the
systematic optimization of iron-arsenic based superconductors for
magnetic-field and high-current applications.Comment: 7 pages, 5 figures, submitted to Journal of Applied Physic
Possible re-entrant superconductivity in EuFe2As2 under pressure
We studied the temperature-pressure phase diagram of EuFe2As2 by measurements
of the electrical resistivity. The antiferromagnetic spin-density-wave
transition at T_0 associated with the FeAs-layers is continuously suppressed
with increasing pressure, while the antiferromagnetic ordering temperature of
the Eu 2+ moments seems to be nearly pressure independent up to 2.6 GPa. Above
2 GPa a sharp drop of the resistivity, \rho(T), indicates the onset of
superconductivity at T_c \approx 29.5 K. Surprisingly, on further reducing the
temperature \rho(T) is increasing again and exhibiting a maximum caused by the
ordering of the Eu 2+ moments, a behavior which is reminiscent of re-entrant
superconductivity as it is observed in the ternary Chevrel phases or in the
rare-earth nickel borocarbides
Two Superconducting Phases in CeRh_1-xIr_xIn_5
Pressure studies of CeRh_1-xIr_xIn_5 indicate two superconducting phases as a
function of x, one with T_c >= 2 K for x < 0.9 and the other with T_c < 1.2 K
for x > 0.9. The higher T_c phase, phase-1, emerges in proximity to an
antiferromagnetic quantum-critical point; whereas, Cooper pairing in the lower
T_c phase-2 is inferred to arise from fluctuations of a yet to be found
magnetic state. The T-x-P phase diagram of CeRh_1-xIr_xIn_5, though
qualitatively similar, is distinctly different from that of
CeCu_2(Si_1-xGe_x)_2.Comment: 5 pages, 3 figure
Pressure-induced change of the pairing symmetry in superconducting CeCu2Si2
Low-temperature (T) heat-capacity measurements under hydrostatic pressure of
up to p=2.1 GPa have been performed on single-crystalline CeCu2Si2. A broad
superconducting (SC) region exists in the T-p phase diagram. In the
low-pressure region antiferromagnetic spin fluctuations and in the
high-pressure region valence fluctuations had previously been proposed to
mediate Cooper pairing. We could identify these two distinct SC regions. We
found different thermodynamic properties of the SC phase in both regions,
supporting the proposal that different mechanisms might be implied in the
formation of superconductivity.Comment: 4 pages, 5 figure
Evidence for time-reversal symmetry breaking in superconducting PrPt4Ge12
Zero and longitudinal field muon spin rotation (muSR) experiments were
performed on the superconductors PrPt4Ge12 and LaPt4Ge12. In PrPt4Ge12 below Tc
a spontaneous magnetization with a temperature variation resembling that of the
superfluid density appears. This observation implies time-reversal symmetry
(TRS) breaking in PrPt4Ge12 below Tc = 7.9 K. This remarkably high Tc for an
anomalous superconductor and the weak and gradual change of Tc and of the
related specific heat anomaly upon La substitution in La_(1-x)Pr_xPt_4Ge_(12)
suggests that the TRS breaking is due to orbital degrees of freedom of the
Cooper pairs.Comment: To appear in Phys. Rev. B. 5 pages, 3 figure
Ising-type Magnetic Anisotropy in CePdAs
We investigated the anisotropic magnetic properties of CePdAs by
magnetic, thermal and electrical transport studies. X-ray diffraction confirmed
the tetragonal ThCrSi-type structure and the high-quality of the single
crystals. Magnetisation and magnetic susceptibility data taken along the
different crystallographic directions evidence a huge crystalline electric
field (CEF) induced Ising-type magneto-crystalline anisotropy with a large
-axis moment and a small in-plane moment at low temperature. A detailed CEF
analysis based on the magnetic susceptibility data indicates an almost pure
CEF ground-state doublet with the dominantly
and the doublets at 290 K and 330
K, respectively. At low temperature, we observe a uniaxial antiferromagnetic
(AFM) transition at K with the crystallographic -direction being
the magnetic easy-axis. The magnetic entropy gain up to reaches almost
indicating localised -electron magnetism without significant
Kondo-type interactions. Below , the application of a magnetic field along
the -axis induces a metamagnetic transition from the AFM to a
field-polarised phase at T, exhibiting a text-book example
of a spin-flip transition as anticipated for an Ising-type AFM.Comment: 9 Pages, 8 figure
Superconductivity in the New Platinum Germanides MPt4Ge12 (M = Rare-earth and Alkaline-earth Metals) with Filled Skutterudite Structure
New germanium-platinum compounds with the filled-skutterudite crystal
structure were synthesized. The structure and composition were investigated by
X-ray diffraction and microprobe analysis. Magnetic susceptibility, specific
heat, and electrical resistivity measurements evidence superconductivity in
LaPt4Ge12 and PrPt4Ge12 below 8.3K. The parameters of the normal and
superconducting states were established. Strong coupling and a crystal electric
field singlet groundstate is found for the Pr compound. Electronic structure
calculations show a large density of states at the Fermi level. Similar
behavior with lower T_c was observed for SrPt4Ge12 and BaPt4Ge12.Comment: RevTeX, 4 figures, submitted to Physical Review Letters July 12, 200
Charge-Doping driven Evolution of Magnetism and non-Fermi-Liquid Behavior in the Filled Skutterudite CePt4Ge12-xSbx
The filled-skutterudite compound CePt4Ge12 is situated close to the border
between intermediate-valence of Ce and heavy-fermion behavior. Substitution of
Ge by Sb drives the system into a strongly correlated and ultimately upon
further increasing the Sb concentration into an antiferromagnetically ordered
state. Our experiments evidence a delicate interplay of emerging Kondo physics
and the formation of a local 4f moment. An extended non-Fermi-liquid region,
which can be understood in the framework of a Kondo-disorder model, is
observed. Band-structure calculations support the conclusion that the physical
properties are governed by the interplay of electron supply via Sb substitution
and the concomitant volume effects.Comment: 5 pages, 3 Figur
- …
