2,823 research outputs found

    Orbitally Driven Spin Pairing in the 3D Non-Magnetic Mott Insulator BaVS3: Evidence from Single Crystal Studies

    Full text link
    Static electrical and magnetic properties of single crystal BaVS_3 were measured over the structural (T_S=240K), metal-insulator (T_MI=69K), and suspected orbital ordering (T_X=30K) transitions. The resistivity is almost isotropic both in the metallic and insulating states. An anomaly in the magnetic anisotropy at T_X signals a phase transition to an ordered low-T state. The results are interpreted in terms of orbital ordering and spin pairing within the lowest crystal field quasi-doublet. The disordered insulator at T_X<T<T_MI is described as a classical liquid of non-magnetic pairs.Comment: 4 pages, 5 figures, revtex, epsf, and multicol style. Problem with figures fixed. To appear in Phys. Rev. B Rap. Com

    59Co Nuclear Quadrupole Resonance Studies of Superconducting and Non-superconducting Bilayer Water Intercalated Sodium Cobalt Oxides NaxCoO2.yH2O

    Full text link
    We report 59Co nuclear quadrupole resonance (NQR) studies of bilayer water intercalated sodium cobalt oxides NaxCoO2.yH2O (BLH) with the superconducting transition temperatures, 2 K < T_c <= 4.6 K, as well as a magnetic BLH sample without superconductivity. We obtained a magnetic phase diagram of T_c and the magnetic ordering temperature T_M against the peak frequency nu_3 59Co NQR transition I_z = +- 5/2 +-7/2 and found a dome shape superconducting phase. The 59Co NQR spectrum of the non-superconducting BLH shows a broadening below T_M without the critical divergence of 1/T_1 and 1/T_2, suggesting an unconventional magnetic ordering. The degree of the enhancement of 1/T_1T at low temperatures increases with the increase of nu_3 though the optimal nu_3~12.30 MHz. In the NaxCoO2.yH2O system, the optimal-T_c superconductivity emerges close to the magnetic instability. T_c is suppressed near the phase boundary at nu_3~12.50 MHz, which is not a conventional magnetic quantum critical point.Comment: 4 pages, 5 figure

    Experimental Evidence for a Glass forming "Stripe Liquid" in the Magnetic Ground State of La1.65Eu0.2Sr0.15CuO4

    Full text link
    We report measurements of the longitudinal (139T11^{139}T_1^{-1}) and transverse (139T21^{139}T_2^{-1}) decay rates of the magnetization of 139^{139}La nuclei performed in a high quality single crystal of La1.65_{1.65}Eu0.2_{0.2}Sr0.15_{0.15}CuO4_{4}. We observe a dramatic slowing of the Cu 3d spins manifested as a sharp increase of both 139T11^{139}T_1^{-1} and 139T21^{139}T_2^{-1} below 30 K. We find that in this temperature range the fluctuations involve a unique time scale τ\tau which diverges as (TTA)1.9(T-T_{\rm A})^{-1.9} with TA5T_{\rm A}\thickapprox 5 K. This behavior is distinct from the continuous freezing observed in underdoped La1x_{1-x}Srx_xCuO4_4 which involves a distribution of energy barriers. By contrast, in La1.65_{1.65}Eu0.2_{0.2}Sr0.15_{0.15}CuO4_{4}, the freezing below 30K is intrinsic to its magnetic ground state and the observed power law supports the existence of a glass forming "charge stripe liquid".Comment: 5 pages, 3 Figures. Revised version, resubmitte
    corecore