1,049 research outputs found

    The Iron Unresolved Transition Array in Active Galactic Nuclei

    Full text link
    The unresolved transition array (UTA) of iron M-shell ions is a prominent absorption feature in the X-ray spectrum of many active galactic nuclei (AGNs). Modeling photoionized plasmas in attempt to match the observed silicon and oxygen lines fail to predict the level of ionization of iron as inferred by this feature. It is suggested that the discrepancy is due to underestimation of the low-temperature dielectronic recombination rates for iron M-shell ions. Modified ionization balance calculations, based on new (guessed) atomic data, support this idea. The results are shown and compared to the global properties of several observed UTAs. Implications for AGN absorbing gas are discussed including an analysis of the ionization parameter distribution in such sources. The need for real calculations of such atomic data is stressed.Comment: 5 pages, 4 figures, accepted by Ap

    Modeling RR Tel through the Evolution of the Spectra

    Full text link
    We investigate the evolution of RR Tel after the outburst by fitting the emission spectra in two epochs. The first one (1978) is characterized by large fluctuations in the light curve and the second one (1993) by the slow fading trend. In the frame of a colliding wind model two shocks are present: the reverse shock propagates in the direction of the white dwarf and the other one expands towards or beyond the giant. The results of our modeling show that in 1993 the expanding shock has overcome the system and is propagating in the nearby ISM. The large fluctuations observed in the 1978 light curve result from line intensity rather than from continuum variation. These variations are explained by fragmentation of matter at the time of head-on collision of the winds from the two stars. A high velocity (500 km/s) wind component is revealed from the fit of the SED of the continuum in the X-ray range in 1978, but is quite unobservable in the line profiles. The geometrical thickness of the emitting clumps is the critical parameter which can explain the short time scale variabilities of the spectrum and the trend of slow line intensity decrease.Comment: 26 pages, LaTeX (including 5 Tables) + 6 PostScript figures. To appear in "The Astrophysical Journal

    Illumination in symbiotic binary stars: Non-LTE photoionization models. II. Wind case

    Get PDF
    We describe a non-LTE photoionization code to calculate the wind structure and emergent spectrum of a red giant wind illuminated by the hot component of a symbiotic binary system. We consider spherically symmetric winds with several different velocity and temperature laws and derive predicted line fluxes as a function of the red giant mass loss rate, \mdot. Our models generally match observations of the symbiotic stars EG And and AG Peg for \mdot about 10^{-8} \msunyr to 10^{-7} \msunyr. The optically thick cross- section of the red giant wind as viewed from the hot component is a crucial parameter in these models. Winds with cross-sections of 2--3 red giant radii reproduce the observed fluxes, because the wind density is then high, about 10^9 cm^{-3}. Our models favor winds with acceleration regions that either lie far from the red giant photosphere or extend for 2--3 red giant radii.Comment: 51 pages, LaTeX including three tables, requires 15 Encapsulated Postscript figures, to appear in Ap

    The Mid-infrared Fine-structure Lines of Neon as an Indicator of Star For mation Rate in Galaxies

    Get PDF
    The fine-structure lines of singly ([Ne II] 12.8 micron) and doubly ([Ne III] 15.6 micron) ionized neon are among the most prominent features in the mid-infrared spectra of star-forming regions, and have the potential to be a powerful new indicator of the star formation rate in galaxies. Using a sample of star-forming galaxies with measurements of the fine-structure lines available from the literature, we show that the sum of the [Ne II] and [Ne III] luminosities obeys a tight, linear correlation with the total infrared luminosity, over 5 orders of magnitude in luminosity. We discuss the formation of the lines and their relation with the Lyman continuum luminosity. A simple calibration between star formation rate and the [Ne II]+[Ne III] luminosity is presented.Comment: To appear in ApJ. 8 page

    Signature of Electron Capture in Iron-Rich Ejecta of SN 2003du

    Full text link
    Late-time near-infrared and optical spectra are presented for the normal-bright SN2003du. At about 300 days after the explosion, the emission profiles of well isolated [FeII] lines (in particular that of the strong 1.644mu feature) trace out the global kinematic distribution of radioactive material in the expanding. In SN2003du, the 1.644 mu [FeII] line shows a flat-topped, profile, indicative of a thick but hollow-centered expanding shell, rather than a strongly-peaked profile that would be expected from a ``center-filled'' distribution.Based on detailed models for exploding Chandrasekhar mass white dwarfs, we show that the feature is consistent with spherical explosion models.Our model predicts central region of non-radioactive electron-capture elements up to 2500--3000km/s as a consequence of burning under high density, and an extended region of 56Ni up to 9,000--10,000km/s. Furthermore our analysis indicates that the 1.644mu [FeII] profile is not consistent with strong mixing between the regions of electron- capture isotopes and the 56Ni layers as is predicted by detailed 3D models for nuclear deflagration fronts. We discuss the possibility that the flat-topped profile could be produced as a result of an infrared catastrophe and conclude that such an explanation is unlikely. We put our results in context to other SNeIa and briefly discuss the implications of our result for the use of SNe Ia as cosmological standard candles.Comment: 12 pages + 8 figures, ApJ (in press, Dec. 20, 2004) For high resolution figures send E-mail to [email protected]

    Star Formation in M51 Triggered by Galaxy Interaction

    Get PDF
    We have mapped the inner 360'' regions of M51 in the 158micron [CII] line at 55'' spatial resolution using the Far-infrared Imaging Fabry-Perot Interferometer (FIFI) on the Kuiper Airborne Observatory (KAO). The emission is peaked at the nucleus, but is detectable over the entire region mapped, which covers much of the optical disk of the galaxy. There are also two strong secondary peaks at ~43% to 70% of the nuclear value located roughly 120'' to the north-east, and south-west of the nucleus. These secondary peaks are at the same distance from the nucleus as the corotation radius of the density wave pattern. The density wave also terminates at this location, and the outlying spiral structure is attributed to material clumping due to the interaction between M51 and NGC5195. This orbit crowding results in cloud-cloud collisions, stimulating star formation, that we see as enhanced [CII] line emission. The [CII] emission at the peaks originates mainly from photodissociation regions (PDRs) formed on the surfaces of molecular clouds that are exposed to OB starlight, so that these [CII] peaks trace star formation peaks in M51. The total mass of [CII] emitting photodissociated gas is ~2.6x10^{8} M_{sun}, or about 2% of the molecular gas as estimated from its CO(1-0) line emission. At the peak [CII] positions, the PDR gas mass to total gas mass fraction is somewhat higher, 3-17%, and at the secondary peaks the mass fraction of the [CII] emitting photodissociated gas can be as high as 72% of the molecular mass.... (continued)Comment: 14 pages, 6 figures, Accepted in ApJ (for higher resolution figures contact the author

    Silicates in D-type symbiotic stars: an ISO overview

    Get PDF
    We investigate the IR spectral features of a sample of D-type symbiotic stars. Analyzing unexploited ISO-SWS data, deriving the basic observational parameters of dust bands and comparing them with respect to those observed in other astronomical sources, we try to highlight the effect of environment on grain chemistry and physic. We find strong amorphous silicate emission bands at 10 micron and 18 micron in a large fraction of the sample. The analysis of the 10 micron band, along with a direct comparison with several astronomical sources, reveals that silicate dust in symbiotic stars shows features between the characteristic circumstellar environments and the interstellar medium. This indicates an increasing reprocessing of grains in relation to specific symbiotic behavior of the objects. A correlation between the central wavelength of the 10 and 18 micron dust bands is found. By the modeling of IR spectral lines we investigate also dust grains conditions within the shocked nebulae. Both the unusual depletion values and the high sputtering efficiency might be explained by the formation of SiO moleculae, which are known to be a very reliable shock tracer. We conclude that the signature of dust chemical disturbance due to symbiotic activity should be looked for in the outer, circumbinary, expanding shells where the environmental conditions for grain processing might be achieved. Symbiotic stars are thus attractive targets for new mid-infrared and mm observations.Comment: 24 pages, 6 figures, 5 tables - to be published in A

    Vector and Tensor Contributions to the Luminosity Distance

    Full text link
    We compute the vector and tensor contributions to the luminosity distance fluctuations in first order perturbation theory and we expand them in spherical harmonics. This work presents the formalism with a first application to a stochastic background of primordial gravitational waves.Comment: 14 pages, 3 figure

    The evolution of ultraviolet emission lines from the circumstellar material surrounding SN 1987A

    Get PDF
    The presence of narrow high-temperature emission lines from nitrogen-rich gas close to SN 1987A has been the principal observational constraint on the evolu- tionary status of the supernova's progenitor. A new analysis of the complete five-year set of low and high resolution IUE ultraviolet spectra of SN 1987A (1987.2--1992.3) provide fluxes for the N V 1240, N IV] 1486, He II 1640, OIII] 1665, NIII] 1751, and CIII] 1908 lines with significantly reduced random and systematic errors and reveals significant short-term fluctuations in the light curves. The N V, N IV] and N III] lines turn on sequentially over 15 to 20 days and show a progression from high to low ionization potential, implying an ioni- zation gradient in the emitting region. The line emission turns on suddenly at 83+/-4 days after the explosion, as defined by N IV]. The N III] line reaches peak luminosity at 399+/-15 days. A ring radius of (6.24+/-0.20)E{17} cm and inclination of 41.0+/-3.9 is derived from these times, assuming a circular ring. The probable role of resonant scattering in the N V light curve introduces systematic errors that leads us to exclude this line from the timing analysis. A new nebular analysis yields improved CNO abundance ratios N/C=6.1+/-1.1 and N/O=1.7+/-0.5, confirming the nitrogen enrichment found in our previous paper. From the late-time behavior of the light curves we find that the emission origi- nates from progressively lower density gas. We estimate the emitting mass near maximum (roughly 400 days) to be roughly 4.7E{-2} solar masses, assuming a filling factor of unity and an electron density of 2.6E4 cm^{-3}. These results are discussed in the context of current models for the emission and hydrodynamics of the ring.Comment: 38 pages, AASTeX v.4.0, 13 Postscript figures; ApJ, in pres

    UV and X-ray Spectral Lines of FeXXIII Ion for Plasma Diagnostics

    Full text link
    We have calculated X-ray and UV spectra of Be-like Fe (FeXXIII) ion in collisional-radiative model including all fine-structure transitions among the 2s^2, 2s2p, 2p^2, 2snl, and 2pnl levels where n=3 and 4, adopting data for the collision strengths by Zhang & Sampson (1992) and by Sampson, Goett, & Clark (1984). Some line intensity ratios can be used for the temperature diagnostics. We show 5 ratios in UV region and 9 ratios in X-ray region as a function of electron temperature and density at 0.3keV < T_e < 10keV and ne=11025cm3n_e = 1 - 10^{25} cm^{-3}. The effect of cascade in these line ratios and in the level population densities are discussed.Comment: LaTeX, 18 pages, 10 Postscript figures. To appear in Physica Script
    corecore