164 research outputs found

    Persistence of charge ordering instability to Coulomb engineering in the excitonic insulator candidate TiSe2

    Get PDF
    Funding: The authors gratefully acknowledge support from the Engineering and Physical Sciences Research Council (under Grants No. EP/X015556/1, No. EP/T02108X/1, and No. EP/M023958/1) and the Leverhulme Trust (Grant No. RL-2016-006). Y. V. and T. W. acknowledge funding by the Cluster of Excellence “CUI: Advanced Imaging of Matter” of the Deutsche Forschungsgemeinschaft (DFG) (EXC 2056, Project No. 390715994) and the DFG research unit FOR 5249 (“QUAST,” Project No. 449872909). J. B. acknowledges funding by the DFG under Germany’s Excellence Strategy [University Allowance, (EXC 2077, Project No. 390741603, University of Bremen)].TiSe2 has long been considered one of the best candidate materials to host the elusive excitonic insulator (EI) phase. However, a finite coupling to the lattice can generically be expected, while a lack of “smoking-gun” signatures for the importance of the electron-hole interaction in driving the phase transition has rendered it challenging to distinguish the EI from the conventional charge-density wave (CDW) phase. Here, we demonstrate a new approach, exploiting the susceptibility of excitons to dielectric screening. We combine mechanical exfoliation with molecular-beam epitaxy to fabricate ultraclean van der Waals heterostructures of monolayer (ML) TiSe2/graphite and ML TiSe2/ℎ-BN. We observe how the modified substrate screening environment drives a renormalization of the quasiparticle band gap of the TiSe2 layer, signifying its susceptibility to Coulomb engineering. The temperature-dependent evolution of its electronic structure, however, remains unaffected, indicating that excitons are not required to drive the CDW transition in TiSe2.Peer reviewe

    Nitric oxide releasing plasma polymer coating with bacteriostatic properties and no cytotoxic side effects

    Get PDF
    Published on 19 March 2015We report a stable plasma polymer coating, using isopentyl nitrite as a volatile precursor, which releases nitric oxide at bacteriostatic concentrations when contacted with water, inhibiting bacterial growth without cytotoxic side effects to human mesenchymal stem/stromal cells.Thomas D. Michl, Bryan R. Coad, Michael Doran, Michael Osiecki, Morteza Hasanzadeh Kafshgari, Nicolas H. Voelcker, Amanda Hüsler, Krasimir Vasilev and Hans J. Griesse

    The Challenge of Examining Social Determinants of Health in People Living With Tourette Syndrome

    Get PDF
    Background: To examine the association between race, ethnicity, and parental educational attainment on tic-related outcomes among Tourette Syndrome (TS) participants in the Tourette Association of America International Consortium for Genetics (TAAICG) database. Methods: 723 participants in the TAAICG dataset aged ≤21 years were included. The relationships between tic-related outcomes and race and ethnicity were examined using linear and logistic regressions. Parametric and nonparametric tests were performed to examine the association between parental educational attainment and tic-related outcomes. Results: Race and ethnicity were collapsed as non-Hispanic white (N=566, 88.0%) versus Other (N=77, 12.0%). Tic symptom onset was earlier by 1.1 years (P &lt; 0.0001) and TS diagnosis age was earlier by 0.9 years (P = 0.0045) in the Other group (versus non-Hispanic white). Sex and parental education as covariates did not contribute to the differences observed in TS diagnosis age. There were no significant group differences observed across the tic-related outcomes in parental education variable. Conclusions: Our study was limited by the low number of nonwhite or Hispanic individuals in the cohort. Racial and ethnic minoritized groups experienced an earlier age of TS diagnosis than non-Hispanic white individuals. Tic severity did not differ between the two groups, and parental educational attainment did not affect tic-related outcomes. There remain significant disparities and gaps in knowledge regarding TS and associated comorbid conditions. Our study suggests the need for more proactive steps to engage individuals with tic disorders from all racial and ethnic minoritized groups to participate in research studies.</p

    Investigation of gene-environment interactions in relation to tic severity

    Get PDF
    Tourette syndrome (TS) is a neuropsychiatric disorder with involvement of genetic and environmental factors. We investigated genetic loci previously implicated in Tourette syndrome and associated disorders in interaction with pre- and perinatal adversity in relation to tic severity using a case-only (N = 518) design. We assessed 98 single-nucleotide polymorphisms (SNPs) selected from (I) top SNPs from genome-wide association studies (GWASs) of TS; (II) top SNPs from GWASs of obsessive–compulsive disorder (OCD), attention-deficit/hyperactivity disorder (ADHD), and autism spectrum disorder (ASD); (III) SNPs previously implicated in candidate-gene studies of TS; (IV) SNPs previously implicated in OCD or ASD; and (V) tagging SNPs in neurotransmitter-related candidate genes. Linear regression models were used to examine the main effects of the SNPs on tic severity, and the interaction effect of these SNPs with a cumulative pre- and perinatal adversity score. Replication was sought for SNPs that met the threshold of significance (after correcting for multiple testing) in a replication sample (N = 678). One SNP (rs7123010), previously implicated in a TS meta-analysis, was significantly related to higher tic severity. We found a gene–environment interaction for rs6539267, another top TS GWAS SNP. These findings were not independently replicated. Our study highlights the future potential of TS GWAS top hits in gene–environment studies

    Investigation of gene–environment interactions in relation to tic severity

    Get PDF
    Tourette syndrome (TS) is a neuropsychiatric disorder with involvement of genetic and environmental factors. We investigated genetic loci previously implicated in Tourette syndrome and associated disorders in interaction with pre- and perinatal adversity in relation to tic severity using a case-only (N = 518) design. We assessed 98 single-nucleotide polymorphisms (SNPs) selected from (I) top SNPs from genome-wide association studies (GWASs) of TS; (II) top SNPs from GWASs of obsessive–compulsive disorder (OCD), attention-deficit/hyperactivity disorder (ADHD), and autism spectrum disorder (ASD); (III) SNPs previously implicated in candidate-gene studies of TS; (IV) SNPs previously implicated in OCD or ASD; and (V) tagging SNPs in neurotransmitter-related candidate genes. Linear regression models were used to examine the main effects of the SNPs on tic severity, and the interaction effect of these SNPs with a cumulative pre- and perinatal adversity score. Replication was sought for SNPs that met the threshold of significance (after correcting for multiple testing) in a replication sample (N = 678). One SNP (rs7123010), previously implicated in a TS meta-analysis, was significantly related to higher tic severity. We found a gene–environment interaction for rs6539267, another top TS GWAS SNP. These findings were not independently replicated. Our study highlights the future potential of TS GWAS top hits in gene–environment studies.This research was funded by National Institute of Mental Health (NIMH) grant R01MH092293 (to GAH and JAT) and NJCTS (New Jersey Center for Tourette Syndrome and Associated Disorders; to GAH and JAT). This work was also supported by grants from the Judah Foundation, the Tourette Association of America, National Institute of Health (NIH) Grants NS40024, NS016648, MH079489, MH073250, the American Recovery and Re-investment Act (ARRA) Grants NS040024-07S1; NS16648-29S1; NS040024-09S1; MH092289; MH092290; MH092291; MH092292; R01MH092293; MH092513; MH092516; MH092520; MH071507; MH079489; MH079487; MH079488; and MH079494. Dr. Mir has received grants from the Instituto de Salud Carlos III (PI10/01674, PI13/01461), the Consejería de Economía, Innovación, Ciencia y Empresa de la Junta de Andalucía (CVI-02526, CTS-7685), the Consejería de Salud y Bienestar Social de la Junta de Andalucía (PI-0741/2010, PI-0437-2012, PI-0471-2013), the Sociedad Andaluza de Neurología, the Fundación Alicia Koplowitz, the Fundación Mutua Madrileña and the Jaques and Gloria Gossweiler Foundation. Dr. Morer has received grants from the Fundacion Alicia Koplowitz and belongs to the research group of the Comissionat per Universitats i Recerca del Departmanent d’Innovacio (DIUE) 2009SGR1119. Dr. Münchau has received grants from the Deutsche Forschungsgemeinschaft (DFG: MU 1692/3-1, MU 1692/4-1 and FOR 2698). This study was also supported by a Grant from the National Institute for Environmental Health Science (R01 ES021462)

    Synaptic processes and immune-related pathways implicated in Tourette syndrome.

    Get PDF
    Tourette syndrome (TS) is a neuropsychiatric disorder of complex genetic architecture involving multiple interacting genes. Here, we sought to elucidate the pathways that underlie the neurobiology of the disorder through genome-wide analysis. We analyzed genome-wide genotypic data of 3581 individuals with TS and 7682 ancestry-matched controls and investigated associations of TS with sets of genes that are expressed in particular cell types and operate in specific neuronal and glial functions. We employed a self-contained, set-based association method (SBA) as well as a competitive gene set method (MAGMA) using individual-level genotype data to perform a comprehensive investigation of the biological background of TS. Our SBA analysis identified three significant gene sets after Bonferroni correction, implicating ligand-gated ion channel signaling, lymphocytic, and cell adhesion and transsynaptic signaling processes. MAGMA analysis further supported the involvement of the cell adhesion and trans-synaptic signaling gene set. The lymphocytic gene set was driven by variants in FLT3, raising an intriguing hypothesis for the involvement of a neuroinflammatory element in TS pathogenesis. The indications of involvement of ligand-gated ion channel signaling reinforce the role of GABA in TS, while the association of cell adhesion and trans-synaptic signaling gene set provides additional support for the role of adhesion molecules in neuropsychiatric disorders. This study reinforces previous findings but also provides new insights into the neurobiology of TS
    corecore