1,210 research outputs found
CANGAROO-III Observation of TeV Gamma Rays from the vicinity of PSR B1 706-44
Observation by the CANGAROO-III stereoscopic system of the Imaging Cherenkov
Telescope has detected extended emission of TeV gamma rays in the vicinity of
the pulsar PSR B170644. The strength of the signal observed as
gamma-ray-like events varies when we apply different ways of emulating
background events. The reason for such uncertainties is argued in relevance to
gamma-rays embedded in the "off-source data", that is, unknown sources and
diffuse emission in the Galactic plane, namely, the existence of a complex
structure of TeV gamma-ray emission around PSR B170644.Comment: 10 pages, 13 figures, to be published in Ap
Performance of the LHD cryogenic system during cooling and excitation tests
Performance of the LHD cryogenic system in the first year\u27s operation was described making importance on the recovery process after the normal transition of the helical coils. During the excitation tests of the LHD superconducting coils up to 2.75 T, the normal zone propagation was observed in the helical coil and the emergency shut-off of the coil power supplies was carried out. 2,700 l of liquid helium evaporated from the helical coils. The coils and the helium refrigerator were separated automatically and the helium refrigerator could keep its steady state operation. After the pressure and flow rate of the recovery gas from the helical coils were settled down to the normal state, the coils were connected to the helium refrigerator and the cooling was restarted. The system could return to the steady state in which coil excitation is enabling, by only three and a half hour
CANGAROO-III observation of TeV gamma rays from the unidentified gamma-ray source HESS J1614-518
We report the detection, with the CANGAROO-III imaging atmospheric Cherenkov
telescope array, of a very high energy gamma-ray signal from the unidentified
gamma-ray source HESS J1614-518, which was discovered in the H.E.S.S. Galactic
plane survey. Diffuse gamma-ray emission was detected above 760 GeV at the 8.9
sigma level during an effective exposure of 54 hr from 2008 May to August. The
spectrum can be represented by a power-law:
8.2+-2.2_{stat}+-2.5_{sys}x10^{-12}x (E/1TeV)^{-Gamma} cm^{-2} s^{-1} TeV^{-1}
with a photon index Gamma of 2.4+-0.3_{stat}+-0.2_{sys}, which is compatible
with that of the H.E.S.S. observations. By combining our result with
multi-wavelength data, we discuss the possible counterparts for HESS J1614-518
and consider radiation mechanisms based on hadronic and leptonic processes for
a supernova remnant, stellar winds from massive stars, and a pulsar wind
nebula. Although a leptonic origin from a pulsar wind nebula driven by an
unknown pulsar remains possible, hadronic-origin emission from an unknown
supernova remnant is preferred.Comment: 9 pages, 7 figures, accepted for publication in Ap
Stretchable and wearable colorimetric patches based on thermoresponsive plasmonic microgels embedded in a hydrogel film
Stimuli-responsive colorimetric sensors are promising for various industrial and medical applications due to the capability of simple, fast, and inexpensive visualization of external stimuli. Here we demonstrate a thermoresponsive, smart colorimetric patch based on a thermoresponsive plasmonic microgel embedded in a stretchable hydrogel film. To achieve a fast and efficient thermoresponsive color change, raspberry-shaped plasmonic microgels were fabricated by decorating gold nanoparticles (AuNPs) on poly(N-isopropylacrylamide) (PNIPAM) microgels, which exhibit reversible and strain-insensitive color shifts (between red and grayish violet) in response to a temperature change. The smart colorimetric patch containing a plasmonic microgels exhibits a significant extinction peak shift (176 nm) in a short time (1 s), with a temperature-sensing resolution of 0.2 degrees C. Moreover, the transition temperature of the plasmonic microgel can be finely tuned by additives and comonomers, so that the exquisite temperature visualization can be conducted over a wide temperature range of 25-40 degrees C by assembling plasmonic microgel films with different transition temperatures into an array patch. For proof-of-concept demonstrations, a freestanding smart colorimetric patch was utilized as a spatial temperature scanner and a colorimetric thermometer for a thermoresponsive actuator, which is potentially applicable in smart, wearable sensors and soft robotics
Cellular Radiosensitivity: How much better do we understand it?
Purpose: Ionizing radiation exposure gives rise to a variety of lesions in DNA that result in genetic instability and potentially tumorigenesis or cell death. Radiation extends its effects on DNA by direct interaction or by radiolysis of H2O that generates free radicals or aqueous electrons capable of interacting with and causing indirect damage to DNA. While the various lesions arising in DNA after radiation exposure can contribute to the mutagenising effects of this agent, the potentially most damaging lesion is the DNA double strand break (DSB) that contributes to genome instability and/or cell death. Thus in many cases failure to recognise and/or repair this lesion determines the radiosensitivity status of the cell. DNA repair mechanisms including homologous recombination (HR) and non-homologous end-joining (NHEJ) have evolved to protect cells against DNA DSB. Mutations in proteins that constitute these repair pathways are characterised by radiosensitivity and genome instability. Defects in a number of these proteins also give rise to genetic disorders that feature not only genetic instability but also immunodeficiency, cancer predisposition, neurodegeneration and other pathologies.
Conclusions: In the past fifty years our understanding of the cellular response to radiation damage has advanced enormously with insight being gained from a wide range of approaches extending from more basic early studies to the sophisticated approaches used today. In this review we discuss our current understanding of the impact of radiation on the cell and the organism gained from the array of past and present studies and attempt to provide an explanation for what it is that determines the response to radiation
Post-Transcriptional Regulation of BCL2 mRNA by the RNA-Binding Protein ZFP36L1 in Malignant B Cells
The human ZFP36 zinc finger protein family consists of ZFP36, ZFP36L1, and ZFP36L2. These proteins regulate various cellular processes, including cell apoptosis, by binding to adenine uridine rich elements in the 3′ untranslated regions of sets of target mRNAs to promote their degradation. The pro-apoptotic and other functions of ZFP36 family members have been implicated in the pathogenesis of lymphoid malignancies. To identify candidate mRNAs that are targeted in the pro-apoptotic response by ZFP36L1, we reverse-engineered a gene regulatory network for all three ZFP36 family members using the ‘maximum information coefficient’ (MIC) for target gene inference on a large microarray gene expression dataset representing cells of diverse histological origin. Of the three inferred ZFP36L1 mRNA targets that were identified, we focussed on experimental validation of mRNA for the pro-survival protein, BCL2, as a target for ZFP36L1. RNA electrophoretic mobility shift assay experiments revealed that ZFP36L1 interacted with the BCL2 adenine uridine rich element. In murine BCL1 leukemia cells stably transduced with a ZFP36L1 ShRNA lentiviral construct, BCL2 mRNA degradation was significantly delayed compared to control lentiviral expressing cells and ZFP36L1 knockdown in different cell types (BCL1, ACHN, Ramos), resulted in increased levels of BCL2 mRNA levels compared to control cells. 3′ untranslated region luciferase reporter assays in HEK293T cells showed that wild type but not zinc finger mutant ZFP36L1 protein was able to downregulate a BCL2 construct containing the BCL2 adenine uridine rich element and removal of the adenine uridine rich core from the BCL2 3′ untranslated region in the reporter construct significantly reduced the ability of ZFP36L1 to mediate this effect. Taken together, our data are consistent with ZFP36L1 interacting with and mediating degradation of BCL2 mRNA as an important target through which ZFP36L1 mediates its pro-apoptotic effects in malignant B-cells
Taking It to the Extreme:The Effect of Coalition Cabinets on Foreign Policy
Institutional constraints have been offered by some scholars as an explanation for why multiparty coalitions should be more peaceful than single-party cabinets. Yet others see the same institutional setting as a prescription for more aggressive behavior. Recent research has investigated these conflicting expectations, but with mixed results. We examine the theoretical bases for these alternative expectations about the effects of coalition politics on foreign policy. We find that previous research is limited theoretically by confounding institutional effects with policy positions, and empirically by analyzing only international conflict data. We address these limitations by examining cases of foreign policy behavior using the World Event/Interaction Survey (WEIS) dataset. Consistent with our observation that institutional constraints have been confounded with policy positions, we find that coalitions are neither more aggressive nor more peaceful, but do engage in more extreme foreign policy behaviors. These findings are discussed with regard to various perspectives on the role of institutions in shaping foreign policy behavior.</p
- …
