2,263 research outputs found
Exotic Rickettsiae in Ixodes ricinus: fact or artifact?
Several pathogenic Rickettsia species can be transmitted via Ixodes ricinus ticks to humans and animals. Surveys of I. ricinus for the presence of Rickettsiae using part of its 16S rRNA gene yield a plethora of new and different Rickettsia sequences. Interpreting these data is sometimes difficult and presenting these findings as new or potentially pathogenic Rickettsiae should be done with caution: a recent report suggested presence of a known human pathogen, R. australis, in questing I. ricinus ticks in Europe. A refined analysis of these results revealed that R. helvetica was most likely to be misinterpreted as R. australis. Evidence in the literature is accumulating that rickettsial DNA sequences found in tick lysates can also be derived from other sources than viable, pathogenic Rickettsiae. For example, from endosymbionts, environmental contamination or even horizontal gene transfer
The Transnational Political Economy of Corporate Governance Regulation: A Research Outline
Corporate governance has become a buzzword of the global business community and is now receiving even wider attention given the repercussions of the Enron collapse. Although there is a burgeoning literature on this topic, the bulk of it is either highly normative or focused on corporate governance practices at the level of the firm. In contrast, our aim is to explain the current transformations of corporate governance regulation. Whereas this regulation used to be a distinctly national affair, it is now increasingly an area subject to both public and private (self-) regulation in multiple arenas, of which three are outstandingly important as well as closely interrelated and, therefore, form the empirical focus of the programme:- Europeanisation in the area of corporate governance regulation affects national regimes of corporate governance with a particular historical diversity, without entirely replacing them.- The EU, furthermore, does not operate in a vacuum but in a transatlantic and global context where it has to negotiate its choices with both state (mainly the US) and non-state actors. At the global level, private bodies such as the International Accounting Standards Board set many corporate governance standards, and international organisations like the OECD disseminate norms for good corporate governance.- Central and East European countries (CEEC) are exposed to the multiple (and partially conflicting) demands by global institutions and the EU when developing their corporat
Where the linearized Poisson-Boltzmann cell model fails: (I) spurious phase separation in charged colloidal suspensions
We perform a linearization of the Poisson-Boltzmann (PB) density functional
for spherical Wigner-Seitz cells that yields Debye-H\"uckel-like equations
agreeing asymptotically with the PB results in the weak-coupling
(high-temperature) limit. Both the canonical (fixed number of microions) as
well as the semi-grand-canonical (in contact with an infinite salt reservoir)
cases are considered and discussed in a unified linearized framework. In the
canonical case, for sufficiently large colloidal charges the linearized theory
predicts the occurrence of a thermodynamical instability with an associated
phase separation of the homogeneous suspension into dilute (gas) and dense
(liquid) phases. In the semi-grand-canonical case it is predicted that the
isothermal compressibility and the osmotic-pressure difference between the
colloidal suspension and the salt reservoir become negative in the
low-temperature, high-surface charge or infinite-dilution (of polyions) limits.
As already pointed out in the literature for the latter case, these features
are in disagreement with the exact nonlinear PB solution inside a Wigner-Seitz
cell and are thus artifacts of the linearization. By using explicitly
gauge-invariant forms of the electrostatic potential we show that these
artifacts, although thermodynamically consistent with quadratic expansions of
the nonlinear functional and osmotic pressure, may be traced back to the
non-fulfillment of the underlying assumptions of the linearization.Comment: 32 pages, 3 PostScript figures, submitted to J. Chem. Phy
Many-body interactions and melting of colloidal crystals
We study the melting behavior of charged colloidal crystals, using a
simulation technique that combines a continuous mean-field Poisson-Boltzmann
description for the microscopic electrolyte ions with a Brownian-dynamics
simulation for the mesoscopic colloids. This technique ensures that many-body
interactions between the colloids are fully taken into account, and thus allows
us to investigate how many-body interactions affect the solid-liquid phase
behavior of charged colloids. Using the Lindemann criterion, we determine the
melting line in a phase-diagram spanned by the colloidal charge and the salt
concentration. We compare our results to predictions based on the established
description of colloidal suspensions in terms of pairwise additive Yukawa
potentials, and find good agreement at high-salt, but not at low-salt
concentration. Analyzing the effective pair-interaction between two colloids in
a crystalline environment, we demonstrate that the difference in the melting
behavior observed at low salt is due to many-body interactions
Application of Random Matrix Theory to Biological Networks
We show that spectral fluctuation of interaction matrices of yeast a core
protein interaction network and a metabolic network follows the description of
the Gaussian orthogonal ensemble (GOE) of random matrix theory (RMT).
Furthermore, we demonstrate that while the global biological networks evaluated
belong to GOE, removal of interactions between constituents transitions the
networks to systems of isolated modules described by the Poisson statistics of
RMT. Our results indicate that although biological networks are very different
from other complex systems at the molecular level, they display the same
statistical properties at large scale. The transition point provides a new
objective approach for the identification of functional modules.Comment: 3 pages, 2 figure
Numerical electrokinetics
A new lattice method is presented in order to efficiently solve the
electrokinetic equations, which describe the structure and dynamics of the
charge cloud and the flow field surrounding a single charged colloidal sphere,
or a fixed array of such objects. We focus on calculating the electrophoretic
mobility in the limit of small driving field, and systematically linearise the
equations with respect to the latter. This gives rise to several subproblems,
each of which is solved by a specialised numerical algorithm. For the total
problem we combine these solvers in an iterative procedure. Applying this
method, we study the effect of the screening mechanism (salt screening vs.
counterion screening) on the electrophoretic mobility, and find a weak
non-trivial dependence, as expected from scaling theory. Furthermore, we find
that the orientation of the charge cloud (i. e. its dipole moment) depends on
the value of the colloid charge, as a result of a competition between
electrostatic and hydrodynamic effects.Comment: accepted for publication in Journal of Physics Condensed Matter
(proceedings of the 2012 CODEF conference
Self-similarity of complex networks
Complex networks have been studied extensively due to their relevance to many
real systems as diverse as the World-Wide-Web (WWW), the Internet, energy
landscapes, biological and social networks
\cite{ab-review,mendes,vespignani,newman,amaral}. A large number of real
networks are called ``scale-free'' because they show a power-law distribution
of the number of links per node \cite{ab-review,barabasi1999,faloutsos}.
However, it is widely believed that complex networks are not {\it length-scale}
invariant or self-similar. This conclusion originates from the ``small-world''
property of these networks, which implies that the number of nodes increases
exponentially with the ``diameter'' of the network
\cite{erdos,bollobas,milgram,watts}, rather than the power-law relation
expected for a self-similar structure. Nevertheless, here we present a novel
approach to the analysis of such networks, revealing that their structure is
indeed self-similar. This result is achieved by the application of a
renormalization procedure which coarse-grains the system into boxes containing
nodes within a given "size". Concurrently, we identify a power-law relation
between the number of boxes needed to cover the network and the size of the box
defining a finite self-similar exponent. These fundamental properties, which
are shown for the WWW, social, cellular and protein-protein interaction
networks, help to understand the emergence of the scale-free property in
complex networks. They suggest a common self-organization dynamics of diverse
networks at different scales into a critical state and in turn bring together
previously unrelated fields: the statistical physics of complex networks with
renormalization group, fractals and critical phenomena.Comment: 28 pages, 12 figures, more informations at http://www.jamlab.or
The electrical double layer for a fully asymmetric electrolyte around a spherical colloid: an integral equation study
The hypernetted chain/mean spherical approximation (HNC/MSA) integral
equation is obtained and solved numerically for a totally asymmetric primitive
model electrolyte around a spherical macroparticle. The ensuing radial
distribution functions show a very good agreement when compared to our Monte
Carlo and molecular dynamics simulations for spherical geometry and with
respect to previous anisotropic reference HNC calculations in the planar limit.
We report an analysis of the potential vs charge relationship, radial
distribution functions, mean electrostatic potential and cumulative reduced
charge for representative cases of 1:1 and 2:2 salts with a size asymmetry
ratio of 2. Our results are collated with those of the Modified Gouy-Chapman
(MGC) and unequal radius Modified Gouy-Chapman (URMGC) theories and with those
of HNC/MSA in the restricted primitive model (RPM) to assess the importance of
size asymmetry effects. One of the most striking characteristics found is
that,\textit{contrary to the general belief}, away from the point of zero
charge the properties of an asymmetric electrical double layer (EDL) are not
those corresponding to a symmetric electrolyte with the size and charge of the
counterion, i.e. \textit{counterions do not always dominate}. This behavior
suggests the existence of a new phenomenology in the EDL that genuinely belongs
to a more realistic size-asymmetric model where steric correlations are taken
into account consistently. Such novel features can not be described by
traditional mean field theories like MGC, URMGC or even by enhanced formalisms,
like HNC/MSA, if they are based on the RPM.Comment: 29 pages, 13 figure
- …
