1,604 research outputs found
Seasonal variation in sonic muscles in the fawn cusk-eel <i>Lepophidium profundorum</i>
The fawn cusk-eel Lepophidium profundorum (Ophidiidae) has an unusual sound-producing system with sexually dimorphic sets of antagonistic muscles. Outside the mating season, the dorsal and ventral muscles are well developed and larger in males than in females, but the tiny intermediate muscles are smaller, suggesting a minor role, if any, in male advertisement call production. We examined summer individuals with more developed gonads and find a fourfold hypertrophy of the intermediate but not the other muscles. This result suggests androgen dependence and an important role in sound production for the intermediate muscle. Even though both sexes gain weight in the summer, the ventral and dorsal muscles in females lose weight, suggesting that sound production is less important in females and that muscle mass may be used to support egg growth
Stochastic inversion of linear first kind integral equations I. Continuous theory and the stochastic generalized inverse
The dataset associated with this paper is in ORE; see http://hdl.handle.net/10871/17644© 2015 American Psychological AssociationThis article may not exactly replicate the final version published in the APA journal. It is not the copy of record.This paper is made available in accordance with publisher policies. The final published version of
this article is available from the publisher’s site. at http://www.apa.org/pubs/journals/xhp/index.aspxBefore reusing this item please check the rights under which it has been made available. Some items are restricted to non-commercial use. Please cite the published version where applicable.The present study explores the link between attentional reorienting and response inhibition. Recent behavioral and neuroscience work indicates that both might rely on similar cognitive and neural mechanisms. We tested two popular accounts of the overlap: The ‘circuit breaker’ account, which assumes that unexpected events produce global suppression of motor output, and the ‘stimulus detection’ account, which assumes that attention is reoriented to unexpected events. In Experiment 1, we presented standard and (unexpected) novel sounds in a go/no-go task. Consistent with the stimulus detection account, we found longer RTs on go trials and higher rates of commission errors on no-go trials when these were preceded by a novel sound compared with a standard sound. In Experiment 2, novel and standard sounds acted as no-go signals. In this experiment, the novel sounds produced an improvement on no-go trials. This further highlights the importance of stimulus detection for response inhibition. Combined, the two experiments support the idea that attention is oriented to novel or unexpected events, impairing no-go performance if these events are irrelevant but enhancing no-go performance when they are relevant. Our findings also indicate that the popular circuit breaker account of the overlap between response inhibition and attentional reorienting needs some revision.European Research CouncilFPU Fellowshi
On the efficiency of field star capture by star clusters
An exciting recent finding regarding scaling relations among globular
clusters is the so-called 'blue tilt': clusters of the blue sub-population
follow a trend of redder colour with increasing luminosity. In this paper we
evaluate to which extent field star capture over a Hubble time may explain the
'blue tilt'. We perform collisional N-body simulations to quantify the amount
of field star capture occuring over a Hubble time to star clusters with 10^3 to
10^6 stars. In the simulations we follow the orbits of field stars passing
through a star cluster and calculate the energy change that the field stars
experience due to gravitational interaction with cluster stars during one
passage through the cluster. The capture condition is that their total energy
after the passage is smaller than the gravitational potential at the cluster's
tidal radius. By folding this with the fly-by rates of field stars with an
assumed space density as in the solar neighbourhood and a range of velocity
dispersions, we derive estimates on the mass fraction of captured field stars
as a function of environment. We find that integrated over a Hubble time, the
ratio between captured field stars and total number of clusters stars is very
low (<~ 10^(-4)), even for the smallest considered field star velocity
dispersion sigma=15 km/s. This holds for star clusters in the mass range of
both open clusters and globular clusters. We furthermore show that tidal
friction has a negligible effect on the energy distribution of field stars
after interaction with the cluster. We conclude that field star capture is not
a probable mechanism for creating the colour-magnitude trend of metal-poor
globular clusters.Comment: 8 pages, 5 figures, accepted for publication in A&
Dynamical evolution of the mass function and radial profile of the Galactic globular cluster system
Evolution of the mass function (MF) and radial distribution (RD) of the
Galactic globular cluster (GC) system is calculated using an advanced and a
realistic Fokker-Planck (FP) model that considers dynamical friction,
disc/bulge shocks and eccentric cluster orbits. We perform hundreds of FP
calculations with different initial cluster conditions, and then search a
wide-parameter space for the best-fitting initial GC MF and RD that evolves
into the observed present-day Galactic GC MF and RD. By allowing both MF and RD
of the initial GC system to vary, which is attempted for the first time in the
present Letter, we find that our best-fitting models have a higher peak mass
for a lognormal initial MF and a higher cut-off mass for a power-law initial MF
than previous estimates, but our initial total masses in GCs, M_{T,i} =
1.5-1.8x10^8 Msun, are comparable to previous results. Significant findings
include that our best-fitting lognormal MF shifts downward by 0.35 dex during
the period of 13 Gyr, and that our power-law initial MF models well-fit the
observed MF and RD only when the initial MF is truncated at >~10^5 Msun. We
also find that our results are insensitive to the initial distribution of orbit
eccentricity and inclination, but are rather sensitive to the initial
concentration of the clusters and to how the initial tidal radius is defined.
If the clusters are assumed to be formed at the apocentre while filling the
tidal radius there, M_{T,i} can be as high as 6.9x10^8 Msun, which amounts to
~75 per cent of the current mass in the stellar halo.Comment: To appear in May 2008 issue of MNRAS, 386, L6
Across-Line SNP Association Study for Direct and Associative Effects on Feather Damage in Laying Hens
An association study between SNP markers and feather condition score on the back, rump and belly of laying hens was performed. Feather condition score is a measure of feather damage, which has been shown to be closely related to feather pecking behaviour in hens housed in groups. A population of 662 hens was genotyped for 1536 SNPs of which 1022 could be used for the association study. The analysis was conducted across 9 different lines of White Leghorn and Rhode Island Red origin. Across lines linkage disequilibrium is conserved at shorter distances than within lines; therefore, SNPs significantly associated with feather condition score across lines are expected to be closer to the functional mutations. The SNPs that had a significant across-line effect but did not show significant SNP-by-line interaction were identified, to test that the association was consistent across lines. Both the direct effect of the individual’s genotype on its plumage condition, and the associative effect of the genotype of the cage mates on the individual’s plumage condition were analysed. The direct genetic effect can be considered as the susceptibility to be pecked at, whereas the associative genetic effect can be interpreted as the propensity to perform feather pecking. Finally, 11 significant associations between SNPs and behavioural traits were detected in the direct model, and 81 in the associative model. A role of the gene for the serotonin receptor 2C (HTR2C) on chromosome 4 was found. This supports existing evidence of a prominent involvement of the serotonergic system in the modulation of this behavioural disorder in laying hens. The genes for IL9, IL4, CCL4 and NFKB were found to be associated to plumage condition, revealing relationships between the immune system and behaviour
The star cluster formation history of the LMC
The Large Magellanic Cloud is one of the nearest galaxies to us and is one of
only few galaxies where the star formation history can be determined from
studying resolved stellar populations. We have compiled a new catalogue of
ages, luminosities and masses of LMC star clusters and used it to determine the
age distribution and dissolution rate of LMC star clusters. We find that the
frequency of massive clusters with masses M>5000 Msun is almost constant
between 10 and 200 Myr, showing that the influence of residual gas expulsion is
limited to the first 10 Myr of cluster evolution or clusters less massive than
5000 Msun. Comparing the cluster frequency in that interval with the absolute
star formation rate, we find that about 15% of all stars in the LMC were formed
in long-lived star clusters that survive for more than 10 Myr. We also find
that the mass function of LMC clusters younger than 1 Gyr can be fitted by a
power-law mass function with slope \alpha=-2.3, while older clusters follow a
significantly shallower slope and interpret this is a sign of the ongoing
dissolution of low-mass clusters. Our data shows that for ages older than 200
Myr, about 90% of all clusters are lost per dex of lifetime. The implied
cluster dissolution rate is significantly faster than that based on analytic
estimates and N-body simulations. Our cluster age data finally shows evidence
for a burst in cluster formation about 1 Gyr ago, but little evidence for
bursts at other ages.Comment: 18 pages, 6 figures, MNRAS in pres
Nonlinear ac conductivity of one-dimensional Mott insulators
We discuss a semiclassical calculation of low energy charge transport in
one-dimensional (1d) insulators with a focus on Mott insulators, whose charge
degrees of freedom are gapped due to the combination of short range
interactions and a periodic lattice potential. Combining RG and instanton
methods, we calculate the nonlinear ac conductivity and interpret the result in
terms of multi-photon absorption. We compare the result of the semiclassical
calculation for interacting systems to a perturbative, fully quantum mechanical
calculation of multi-photon absorption in a 1d band insulator and find good
agreement when the number of simultaneously absorbed photons is large.Comment: Dedicated to Thomas Nattermann on the occasion of his 60th birthday.
To appear in JSTAT. 5 pages, 2 figure
Strong back-action of a linear circuit on a single electronic quantum channel
What are the quantum laws of electricity in mesoscopic circuits? This very
fundamental question has also direct implications for the quantum engineering
of nanoelectronic devices. Indeed, when a quantum coherent conductor is
inserted into a circuit, its transport properties are modified. In particular,
its conductance is reduced because of the circuit back-action. This phenomenon,
called environmental Coulomb blockade, results from the granularity of charge
transfers across the coherent conductor. Although extensively studied for a
tunnel junction in a linear circuit, it is only fully understood for arbitrary
short coherent conductors in the limit of small circuit impedances and small
conductance reduction. Here, we investigate experimentally the strong
back-action regime, with a conductance reduction of up to 90%. This is achieved
by embedding a single quantum channel of tunable transmission in an adjustable
on-chip circuit of impedance comparable to the resistance quantum
at microwave frequencies. The experiment reveals important deviations from
calculations performed in the weak back-action framework, and matches with
recent theoretical results. From these measurements, we propose a generalized
expression for the conductance of an arbitrary quantum channel embedded in a
linear circuit.Comment: 11 pages including supplementary information, to be published in
Nature Physic
The influence of residual gas expulsion on the evolution of the Galactic globular cluster system and the origin of the Population II halo
We present new results on the evolution of the mass function of the globular
cluster system of the Milky Way, taking the effect of residual gas expulsion
into account. We assume that gas embedded star clusters start with a power-law
mass function with slope \beta=2. The dissolution of the clusters is then
studied under the combined influence of residual gas expulsion driven by energy
feedback from massive stars, stellar mass-loss, two-body relaxation and an
external tidal field. The influence of residual gas expulsion is studied by
applying results from a large grid of N-body simulations computed by Baumgardt
& Kroupa (2007).
In our model, star clusters with masses less than 10^5 M_sun lose their
residual gas on timescales much shorter than their crossing time and residual
gas expulsion is the main dissolution mechanism for star clusters, destroying
about 95% of all clusters within a few 10s of Myr. We find that in this case
the final mass function of globular clusters is established mainly by the gas
expulsion and therefore nearly independent of the strength of the external
tidal field, and that a power-law mass function for the gas embedded star
clusters is turned into a present-day log-normal one.
Another consequence of residual gas expulsion and the associated strong
infant mortality of star clusters is that the Galactic halo stars come from
dissolved star clusters. Since field halo stars would come mainly from
low-mass, short-lived clusters, our model provides an explanation for the
observed abundance variations of light elements among globular cluster stars
and the absence of such variations among the halo field stars.Comment: 12 pages, 9 figures, MNRAS accepte
- …
