246 research outputs found
Data report: Summary of revised alteration phases for PACMANUS hydrothermal field - X-ray diffraction analysis of altered felsic volcanic rocks from Holes 1188A, 1188F, 1189A and 1189B
Postcruise X-ray diffraction (XRD) data for 95 whole-rock samples from Holes 1188A, 1188F, 1189A, and 1189B are presented. The samples represent alteration types recovered during Leg 193. The data set is incorporated into the shipboard XRD data set.
Based on the newly obtained XRD data, distribution of alteration phases were redrawn for Ocean Drilling Program Sites 1188 and 1189
Compositional variation of lavas from a young volcanic field on the Southern Mid-Atlantic Ridge, 8°50`S
Alteration at the ultramafic-hosted Logatchev hydrothermal field: Constraints from trace element and Sr-O isotope data
Serpentinized peridotite and gabbronorite represent the host rocks to the active, ultramafic-hosted Logatchev hydrothermal field at the Mid-Atlantic Ridge. We use trace element, δ18O and 87Sr/86Sr data from bulk rock samples and mineral separates in order to constrain the controls on the geochemical budget within the Logatchev hydrothermal system. The trace element data of serpentinized peridotite show strong compositional variations indicating a range of processes. Some peridotites experienced geochemical modifications associated with melt-rock interaction processes prior to serpentinization, which resulted in positive correlations of increasing high field strength element (HFSE) concentrations and light rare earth element (LREE) contents. Other serpentinites and lizardite mineral separates are enriched in LREE, lacking a correlation with HFSE due to interaction with high-temperature, black-smoker type fluids. The enrichment of serpentinites and lizardite separates in trace elements, as well as locally developed negative Ce-anomalies, indicate that interaction with low-T ambient seawater is another important process in the Logatchev hydrothermal system. Hence, mixing of high-T hydrothermal fluids during serpentinization and/or re-equilibration of O-isotope signatures during subsequent low-T alteration is required to explain the trace element and δ18O temperature constraints. Highly radiogenic 87Sr/86Sr signatures of serpentinite and lizardite separates provide additional evidence for interaction with seawater-derived fluids. Sparse talc alteration at the Logatchev site are most likely caused by Si-metasomatism of serpentinite associated with the emplacement of shallow gabbro intrusion(s) generating localized hydrothermal circulation. In summary the geochemistry of serpentinites from the Logatchev site document subsurface processes and the evolution of a seafloor ultramafic hydrothermal system
Diking, young volcanism and diffuse hydrothermal activity on the southern Mid-Atlantic Ridge: The Lilliput field at 9°33'S
Detailed exploration with remotely operated and autonomous deep submergence vehicles has revealed, at 9 degrees 33'S, the presence of the southernmost active hydrothermal field known so far on the Mid-Atlantic Ridge. The size of the hydrothermal field, which we have named "Lilliput", is about 1000 m x 250 m. It lies in a water depth of 1500 m on a ridge segment (Segment A3) with considerably thickened crust of 11 km. Four relatively small diffuse vent sites occur on a large young (estimated <100 years old) lava flow, partly covering the flow with hydrothermal Fe-oxide/hydroxide sediments. Based on homogeneous major element compositions of ca. 25 lava samples, this flow covers an area of at least 5 km x 0.6 km. The lava flow erupted from a series of parallel fissures at the western edge of the flow and a volcanic ridge consisting of up to 30 m high pillow mounds. The volcanic ridge probably represents the surface expression of an underlying dike which fed the flow. Several drained lava pond structures were observed within the flow but only one shows hydrothermal activity. The hydrothermal venting and precipitation of abundant Fe-oxyhydroxides appear to be related to the young diking and eruption event and the four different hydrothermally active sites of the Lilliput field lie along and almost equidistant from the eastern flank of the supposed dike. Although a hydrothermal plume some 500 m above the seafloor was found in two consecutive years (2005 and 2006), no high-temperature venting associated with Lilliput has been found. in agreement with findings at other ridges with thick crust such as Reykjanes. High magma supply rate and frequent diking and eruption events may lead to hot hydrothermal vents being rare in slow-spreading segments with thick crust whereas diffuse venting is abundant. Interestingly, the fauna at the Lilliput vents largely consists of small and apparently juvenile mussels (Bathymodiolus sp.) and did not show any signs of growth during the four years of continuing observations possibly reflecting pulsing hydrothermal activity
The Otanmäki REE mineralization (Finland) : a potential source of critical elements in Europe
A Window into Practice: Examining Elementary Writing Methods Instruction
We know very little about what happens in elementary literacy methods courses, particularly those that focus on writing instruction. In this study, we offer a window into writing methods instruction, examining three pedagogies of practice used by experienced teacher educators (TEs) across one U.S. state —representations, decompositions, and approximations of practice (Grossman, Compton, Igra, Ronfeldt, Shahan, & Williamson, 2009). We found a variety of ways that instructors use these pedagogies of practice, both in isolation and in combination, in their instruction. We provide implications and suggestions for the support and development of elementary writing methods TEs
Compositional variation and 226Ra-230Th model ages of axial lavas from the southern Mid-Atlantic Ridge, 8°48′S
We present geological observations and geochemical data for the youngest volcanic features on the slow-spreading Mid-Atlantic Ridge at 8°48'S that shows seismic evidence for a thickened crust and excess magma formation. Young lava flows with high sonar reflectivity cover about 14 km2 in the axial rift and were probably erupted from two axial volcanic ridges each of about 3 km in length. Three different lava units occur along an about 11 km long portion of the ridge, and lavas from the northern axial volcanic ridge differ from those of the southern axial volcanic ridge and surrounding lava flows. Basalts from the axial rift flanks and from a pillow mound within the young flows are more incompatible element depleted than those from the young volcanic field. Lavas from this volcanic area have 226Ra-230Th disequilibria model ages of 1,000 and 4,000 years whereas the older lavas from the rift flank and the pillow mound, but also some of the lava field, are older than 8,000 years. Glasses from the northern and southern ends of the southern lava unit indicate up to 100°C cooler magma temperatures than in the center and increased assimilation of hydrothermally altered material. The compositional heterogeneity on a scale of 3 km suggests small magma batches rising vertically from the mantle to the surface without significant lateral flow and mixing. The observations on the 8°48'S lava field support the model of low frequency eruptions from single ascending magma batches that has been developed for slow-spreading ridges
Platinum-group elements, S, Se and Cu in highly depleted abyssal peridotites from the Mid-Atlantic Ocean Ridge (ODP Hole 1274A): Influence of hydrothermal and magmatic processes
Highly depleted harzburgites and dunites were recovered from ODP Hole 1274A, near the intersection between the Mid-Atlantic Ocean Ridge and the 15°20′N Fracture Zone. In addition to high degrees of partial melting, these peridotites underwent multiple episodes of melt-rock reaction and intense serpentinization and seawater alteration close to the seafloor. Low concentrations of Se, Cu and platinum-group elements (PGE) in harzburgites drilled at around 35-85 m below seafloor are consistent with the consumption of mantle sulfides after high degrees (>15-20 %) of partial melting and redistribution of chalcophile and siderophile elements into PGE-rich residual microphases. Higher concentrations of Cu, Se, Ru, Rh and Pd in harzburgites from the uppermost and lowest cores testify to late reaction with a sulfide melt. Dunites were formed by percolation of silica- and sulfur-undersaturated melts into low-Se harzburgites. Platinum-group and chalcophile elements were not mobilized during dunite formation and mostly preserve the signature of precursor harzburgites, except for higher Ru and lower Pt contents caused by precipitation and removal of platinum-group minerals. During serpentinization at low temperature (<250 °C) and reducing conditions, mantle sulfides experienced desulfurization to S-poor sulfides (mainly heazlewoodite) and awaruite. Contrary to Se and Cu, sulfur does not record the magmatic evolution of peridotites but was mostly added in hydrothermal sulfides and sulfate from seawater. Platinum-group elements were unaffected by post-magmatic low-temperature processes, except Pt and Pd that may have been slightly remobilized during oxidative seawater alteration
New York City House Mice (Mus musculus) as Potential Reservoirs for Pathogenic Bacteria and Antimicrobial Resistance Determinants
House mice (Mus musculus) thrive in large urban centers worldwide. Nonetheless, little is known about the role that they may play in contributing to environmental contamination with potentially pathogenic bacteria. Here, we describe the fecal microbiome of house mice with emphasis on detection of pathogenic bacteria and antimicrobial resistance genes by molecular methods. Four hundred sixteen mice were collected from predominantly residential buildings in seven sites across New York City over a period of 13 months. 16S rRNA sequencing identified Bacteroidetes as dominant and revealed high levels of Proteobacteria. A targeted PCR screen of 11 bacteria, as indicated by 16S rRNA analyses, found that mice are carriers of several gastrointestinal disease-causing agents, including Shigella, Salmonella, Clostridium difficile, and diarrheagenic Escherichia coli. Furthermore, genes mediating antimicrobial resistance to fluoroquinolones (qnrB) and β-lactam drugs (blaSHV and blaACT/MIR) were widely distributed. Culture and molecular strain typing of C. difficile revealed that mice harbor ribotypes associated with human disease, and screening of kidney samples demonstrated genetic evidence of pathogenic Leptospira species. In concert, these findings support the need for further research into the role of house mice as potential reservoirs for human pathogens and antimicrobial resistance in the built environment
- …
