321 research outputs found
The lattice ghost propagator in Landau gauge up to three loops using Numerical Stochastic Perturbation Theory
We complete our high-accuracy studies of the lattice ghost propagator in
Landau gauge in Numerical Stochastic Perturbation Theory up to three loops. We
present a systematic strategy which allows to extract with sufficient precision
the non-logarithmic parts of logarithmically divergent quantities as a function
of the propagator momentum squared in the infinite-volume and limits.
We find accurate coincidence with the one-loop result for the ghost self-energy
known from standard Lattice Perturbation Theory and improve our previous
estimate for the two-loop constant contribution to the ghost self-energy in
Landau gauge. Our results for the perturbative ghost propagator are compared
with Monte Carlo measurements of the ghost propagator performed by the Berlin
Humboldt university group which has used the exponential relation between
potentials and gauge links.Comment: 8 pages, 6 figures, XXVII International Symposium on Lattice Field
Theory - LAT2009, Beijin
Perturbative renormalisation of quark bilinear operators for overlap fermions with and without stout links and improved gauge action
We calculate lattice renormalisation constants of local and one-link quark
operators for overlap fermions and improved gauge actions in one-loop
perturbation theory. For the local operators we stout smear the SU(3) links in
the fermionic action. Using the popular tadpole improved L\"uscher-Weisz
actions at and we present numerical values for the Z
factors in the scheme (partly as function of the stout smearing
strength). We compare various levels of mean field (tadpole) improvement which
have been applied to our results.Comment: 7 page
Scaling of Non-Perturbatively O(a) Improved Wilson Fermions: Hadron Spectrum, Quark Masses and Decay Constants
We compute the hadron mass spectrum, the quark masses and the meson decay
constants in quenched lattice QCD with non-perturbatively improved
Wilson fermions. The calculations are done for two values of the coupling
constant, and 6.2, and the results are compared with the
predictions of ordinary Wilson fermions. We find that the improved action
reduces lattice artifacts as expected
- …
