483 research outputs found
Simulation of the electrohydrodynamic instability process used in the fabrication of hierarchic and hollow micro/nanostructures
This article demonstrates that the electrohydrodynamic patterning process, a novel technique for the manufacturing of micro-and nano-scale structures, also allows the one-step realization of hierarchical structures and hollow structures. Through numerical simulation, it is shown that multilevel structures can be obtained if process time and applied electric voltage are optimized. As an example, the growth of structures with a width of around 187 nm and depth of 95 nm has been successfully simulated alongside structures with width of around 0.4 mu m and depth of 0.8 mu m. The width of the protrusive mask patterns is shown to determine whether hollow structures with single or multiple shapes can be formed using electric field assisted capillarity. The numerical simulation process effectively demonstrates that the realization of micro/nano-structures with hierarchic and multilevel shapes can be considered as an innovative manufacturing process for MEMS or micro/nanofluidic structures.</p
Oscillating and star-shaped drops levitated by an air-flow
We investigate the spontaneous oscillations of drops levitated above an air cushion, eventually inducing a breaking of axisymmetry and the appearance of “star drops”. This is strongly reminiscent of the Leidenfrost stars that are observed for drops floating above a hot substrate. The key advantage of this work is that we inject the airflow at a constant rate below the drop, thus eliminating thermal effects and allowing for a better control of the flow rate. We perform experiments with drops of different viscosities and observe stable states, oscillations, and chimney instabilities. We find that for a given drop size the instability appears above a critical flow rate, where the latter is largest for small drops. All these observations are reproduced by numerical simulations, where we treat the drop using potential flow and the gas as a viscous lubrication layer. Qualitatively, the onset of instability agrees with the experimental results, although the typical flow rates are too large by a factor 10. Our results demonstrate that thermal effects are not important for the formation of star drops and strongly suggest a purely hydrodynamic mechanism for the formation of Leidenfrost stars
Absorption Enhancement in Organic-Inorganic Halide Perovskite Films with Embedded Plasmonic Gold Nanoparticles
We report on the numerical analysis of solar absorption enhancement in organic-inorganic halide perovskite films embedding plasmonic gold nanoparticles. The effect of particle size and concentration is analyzed in realistic systems in which random particle location within the perovskite film and the eventual formation of dimers are also taken into account. We find a maximum integrated solar absorption enhancement of ∼10% in perovskite films of 200 nm thickness and ∼6% in 300 nm films, with spheres of radii 60 and 90 nm, respectively, in volume concentrations of around 10% in both cases. We show that the presence of dimers boosts the absorption enhancement up to ∼12% in the thinnest films considered. Absorption reinforcement arises from a double contribution of plasmonic near-field and scattering effects, whose respective weight can be discriminated and evaluated from the simulations.Peer Reviewe
Spectrum of Illness in International Migrants Seen at GeoSentinel Clinics in 1997-2009, Part 2: Migrants Resettled Internationally and Evaluated for Specific Health Concerns
Of 7629 migrants, one third were infected with tuberculosis (22% active, 10% latent), one quarter with a variety of parasites (malaria 7%, schistosomes 6%, Strongyloides 5%, miscellaneous 5%), and 17% with chronic viral hepatitis (12% hepatitis B, 5% hepatitis C
Communications Biophysics
Contains research objectives and summary of research on thirteen research projects split into four section.National Institutes of Health (Grant 1 RO1 NS10737-01)National Institutes of Health (Grant 1 ROI NS10916-01)National Institutes of Health (Grant 5 RO1 NS11000-02)National Institutes of Health (Grant 1 RO1 NS11153-01)Harvard M.I.T. Rehabilitation Engineering CenterU. S. Department of Health, Education, and Welfare, Grant 23-P-55854National Institutes of Health (Grant 1 RO1 NS11680-01)Norlin Music, Inc.Clarence J. LeBel FundNational Institutes of Health (Grant 1 RO1 NS11080-01A1)National Institutes of Health (Grant 5 TO1 GM01555-08)M.I.T. Health Sciences FundBoston City Hospital Purchase Order 1176-05-21335-C
Nucleoside Reverse Transcriptase Inhibitor Resistance Mutations Associated with First-Line Stavudine-Containing Antiretroviral Therapy: Programmatic Implications for Countries Phasing Out Stavudine
Background The World Health Organization Antiretroviral Treatment Guidelines recommend phasing-out stavudine because of its risk of long-term toxicity. There are two mutational pathways of stavudine resistance with different implications for zidovudine and tenofovir cross-resistance, the primary candidates for replacing stavudine. However, because resistance testing is rarely available in resource-limited settings, it is critical to identify the cross-resistance patterns associated with first-line stavudine failure. Methods We analyzed HIV-1 resistance mutations following first-line stavudine failure from 35 publications comprising 1,825 individuals. We also assessed the influence of concomitant nevirapine vs. efavirenz, therapy duration, and HIV-1 subtype on the proportions of mutations associated with zidovudine vs. tenofovir cross-resistance. Results Mutations with preferential zidovudine activity, K65R or K70E, occurred in 5.3% of individuals. Mutations with preferential tenofovir activity, ≥two thymidine analog mutations (TAMs) or Q151M, occurred in 22% of individuals. Nevirapine increased the risk of TAMs, K65R, and Q151M. Longer therapy increased the risk of TAMs and Q151M but not K65R. Subtype C and CRF01_AE increased the risk of K65R, but only CRF01_AE increased the risk of K65R without Q151M. Conclusions Regardless of concomitant nevirapine vs. efavirenz, therapy duration, or subtype, tenofovir was more likely than zidovudine to retain antiviral activity following first-line d4T therap
Crystal Growth and Unusual Electronic Transport Properties of Some Reduced Molybdenum Oxides with Bi-Octahedral Mo10 Clusters
Single crystals of AM05O3 (A = Ca, Sr, La-Gd), suitable for electrical conductivity measurements have been grown by high temperature and fused salt electrolytic techniques. The structures of all of these compounds are dominated by the presence of bi-octahedral clusters of Mo atoms joined together parallel to the monoclinic a axis, forming infinite chains. Temperature dependent electrical resistivity measurements on AMo5Og (A = La, Ce, Pr, Nd, Sm) show anomalous metal-semiconductor transitions near 180 and 30 K.
The resistivities of the Eu and Gd analogues are different, in that the former is semiconducting while the latter shows a weak anomaly ~ 110 K. The Ca and Sr analogues are also semiconducting in the range 20-300 K. The electrical conductivity of these phases appears to be closely related to the inter-cluster separation and the number of metal-cluster electrons. The magnetic susceptibility of these compounds show no anomalies at the temperatures corresponding to the transitions seen in their electrical resistivities. The magnetic susceptibility of LaMosOg shows a small decrease in the !y (dy/dT) vs T plot in the vicinity of ~ 150 K
The Marine Microbial Eukaryote Transcriptome Sequencing Project (MMETSP): illuminating the functional diversity of eukaryotic life in the oceans through transcriptome sequencing
International audienceCurrent sampling of genomic sequence data from eukaryotes is relatively poor, biased, and inadequate to address important questions about their biology, evolution, and ecology; this Community Page describes a resource of 700 transcriptomes from marine microbial eukaryotes to help understand their role in the world's oceans
- …
