62 research outputs found
Dynamics and control of fast ion crystal splitting in segmented Paul traps
We theoretically investigate the process of splitting two-ion crystals in
segmented Paul traps, i.e. the structural transition from two ions confined in
a common well to ions confined in separate wells. The precise control of this
process by application of suitable voltage ramps to the trap segments is
non-trivial, as the harmonic confinement transiently vanishes during the
process. This makes the ions strongly susceptible to background electric field
noise, and to static offset fields in the direction of the trap axis. We
analyze the reasons why large energy transfers can occur, which are impulsive
acceleration, the presence of residual background fields and enhanced anomalous
heating. For the impulsive acceleration, we identify the diabatic and adiabatic
regimes, which are characterized by different scaling behavior of the energy
transfer with respect to time. We propose a suitable control scheme based on
experimentally accessible parameters. Simulations are used to verify both the
high sensitivity of the splitting result and the performance of our control
scheme. Finally, we analyze the impact of trap geometry parameters on the
crystal splitting process.Comment: 23 pages, 9 figure
Precise Experimental Investigation of Eigenmodes in a Planar Ion Crystal
The accurate characterization of eigenmodes and eigenfrequencies of
two-dimensional ion crystals provides the foundation for the use of such
structures for quantum simulation purposes. We present a combined experimental
and theoretical study of two-dimensional ion crystals. We demonstrate that
standard pseudopotential theory accurately predicts the positions of the ions
and the location of structural transitions between different crystal
configurations. However, pseudopotential theory is insufficient to determine
eigenfrequencies of the two-dimensional ion crystals accurately but shows
significant deviations from the experimental data obtained from resolved
sideband spectroscopy. Agreement at the level of 2.5 x 10^(-3) is found with
the full time-dependent Coulomb theory using the Floquet-Lyapunov approach and
the effect is understood from the dynamics of two-dimensional ion crystals in
the Paul trap. The results represent initial steps towards an exploitation of
these structures for quantum simulation schemes.Comment: 5 pages, 4 figures, supplemental material (mathematica and matlab
files) available upon reques
Controlling the transport of an ion: Classical and quantum mechanical solutions
We investigate the performance of different control techniques for ion
transport in state-of-the-art segmented miniaturized ion traps. We employ
numerical optimization of classical trajectories and quantum wavepacket
propagation as well as analytical solutions derived from invariant based
inverse engineering and geometric optimal control. We find that accurate
shuttling can be performed with operation times below the trap oscillation
period. The maximum speed is limited by the maximum acceleration that can be
exerted on the ion. When using controls obtained from classical dynamics for
wavepacket propagation, wavepacket squeezing is the only quantum effect that
comes into play for a large range of trapping parameters. We show that this can
be corrected by a compensating force derived from invariant based inverse
engineering, without a significant increase in the operation time
Cryogenic setup for trapped ion quantum computing
We report on the design of a cryogenic setup for trapped ion quantum
computing containing a segmented surface electrode trap. The heat shield of our
cryostat is designed to attenuate alternating magnetic field noise, resulting
in 120~dB reduction of 50~Hz noise along the magnetic field axis. We combine
this efficient magnetic shielding with high optical access required for single
ion addressing as well as for efficient state detection by placing two lenses
each with numerical aperture 0.23 inside the inner heat shield. The cryostat
design incorporates vibration isolation to avoid decoherence of optical qubits
due to the motion of the cryostat. We measure vibrations of the cryostat of
less than 20~nm over 2~s. In addition to the cryogenic apparatus, we
describe the setup required for an operation with
Ca and Sr ions.
The instability of the laser manipulating the optical qubits in
Ca is characterized yielding a minimum of its
Allan deviation of 2.410 at 0.33~s. To evaluate the
performance of the apparatus, we trapped Ca
ions, obtaining a heating rate of 2.14(16)~phonons/s and a Gaussian decay of
the Ramsey contrast with a 1/e-time of 18.2(8)~ms
Theoretical model for ultracold molecule formation via adaptive feedback control
We investigate pump-dump photoassociation of ultracold molecules with
amplitude- and phase-modulated femtosecond laser pulses. For this purpose a
perturbative model for the light-matter interaction is developed and combined
with a genetic algorithm for adaptive feedback control of the laser pulse
shapes. The model is applied to the formation of 85Rb2 molecules in a
magneto-optical trap. We find for optimized pulse shapes an improvement for the
formation of ground state molecules by more than a factor of 10 compared to
unshaped pulses at the same pump-dump delay time, and by 40% compared to
unshaped pulses at the respective optimal pump-dump delay time. Since our model
yields directly the spectral amplitudes and phases of the optimized pulses, the
results are directly applicable in pulse shaping experiments
Designing spin-spin interactions with one and two dimensional ion crystals in planar micro traps
We discuss the experimental feasibility of quantum simulation with trapped
ion crystals, using magnetic field gradients. We describe a micro structured
planar ion trap, which contains a central wire loop generating a strong
magnetic gradient of about 20 T/m in an ion crystal held about 160 \mu m above
the surface. On the theoretical side, we extend a proposal about spin-spin
interactions via magnetic gradient induced coupling (MAGIC) [Johanning, et al,
J. Phys. B: At. Mol. Opt. Phys. 42 (2009) 154009]. We describe aspects where
planar ion traps promise novel physics: Spin-spin coupling strengths of
transversal eigenmodes exhibit significant advantages over the coupling schemes
in longitudinal direction that have been previously investigated. With a chip
device and a magnetic field coil with small inductance, a resonant enhancement
of magnetic spin forces through the application of alternating magnetic field
gradients is proposed. Such resonantly enhanced spin-spin coupling may be used,
for instance, to create Schr\"odinger cat states. Finally we investigate
magnetic gradient interactions in two-dimensional ion crystals, and discuss
frustration effects in such two-dimensional arrangements.Comment: 20 pages, 13 figure
A trapped-ion local field probe
We introduce a measurement scheme that utilizes a single ion as a local field
probe. The ion is confined in a segmented Paul trap and shuttled around to
reach different probing sites. By the use of a single atom probe, it becomes
possible characterizing fields with spatial resolution of a few nm within an
extensive region of millimeters. We demonstrate the scheme by accurately
investigating the electric fields providing the confinement for the ion. For
this we present all theoretical and practical methods necessary to generate
these potentials. We find sub-percent agreement between measured and calculated
electric field values
Colloquium: Trapped ions as quantum bits -- essential numerical tools
Trapped, laser-cooled atoms and ions are quantum systems which can be
experimentally controlled with an as yet unmatched degree of precision. Due to
the control of the motion and the internal degrees of freedom, these quantum
systems can be adequately described by a well known Hamiltonian. In this
colloquium, we present powerful numerical tools for the optimization of the
external control of the motional and internal states of trapped neutral atoms,
explicitly applied to the case of trapped laser-cooled ions in a segmented
ion-trap. We then delve into solving inverse problems, when optimizing trapping
potentials for ions. Our presentation is complemented by a quantum mechanical
treatment of the wavepacket dynamics of a trapped ion. Efficient numerical
solvers for both time-independent and time-dependent problems are provided.
Shaping the motional wavefunctions and optimizing a quantum gate is realized by
the application of quantum optimal control techniques. The numerical methods
presented can also be used to gain an intuitive understanding of quantum
experiments with trapped ions by performing virtual simulated experiments on a
personal computer. Code and executables are supplied as supplementary online
material (http://kilian-singer.de/ent).Comment: accepted for publication in Review of Modern Physics 201
- …
