20,809 research outputs found
A Mechanochemical Model of Cell Reorientation on Substrates under Cyclic Stretch
published_or_final_versio
Bond formation of surface-tethered receptor-ligand pairs in relative separation
published_or_final_versio
Orbit- and Atom-Resolved Spin Textures of Intrinsic, Extrinsic and Hybridized Dirac Cone States
Combining first-principles calculations and spin- and angle-resolved
photoemission spectroscopy measurements, we identify the helical spin textures
for three different Dirac cone states in the interfaced systems of a 2D
topological insulator (TI) of Bi(111) bilayer and a 3D TI Bi2Se3 or Bi2Te3. The
spin texture is found to be the same for the intrinsic Dirac cone of Bi2Se3 or
Bi2Te3 surface state, the extrinsic Dirac cone of Bi bilayer state induced by
Rashba effect, and the hybridized Dirac cone between the former two states.
Further orbit- and atom-resolved analysis shows that s and pz orbits have a
clockwise (counterclockwise) spin rotation tangent to the iso-energy contour of
upper (lower) Dirac cone, while px and py orbits have an additional radial spin
component. The Dirac cone states may reside on different atomic layers, but
have the same spin texture. Our results suggest that the unique spin texture of
Dirac cone states is a signature property of spin-orbit coupling, independent
of topology
Lasing from single, stationary, dye-doped glycerol/water microdroplets located on a superhydrophobic surface
We report laser emission from single, stationary, Rhodamine B-doped
glycerol/water microdroplets located on a superhydrophobic surface. In the
experiments, a pulsed, frequency-doubled Nd:YAG laser operating at 532 nm was
used as the excitation source. The microdroplets ranged in diameter from a few
to 20 um. Lasing was achieved in the red-shifted portion of the dye emission
spectrum with threshold fluences as low as 750 J/cm2. Photobleaching was
observed when the microdroplets were pumped above threshold. In certain cases,
multimode lasing was also observed and attributed to the simultaneous lasing of
two modes belonging to different sets of whispering gallery modes.Comment: to appear in Optics Communication
Ultrathin MgB2 films fabricated on Al2O3 substrate by hybrid physical-chemical vapor deposition with high Tc and Jc
Ultrathin MgB2 superconducting films with a thickness down to 7.5 nm are
epitaxially grown on (0001) Al2O3 substrate by hybrid physical-chemical vapor
deposition method. The films are phase-pure, oxidation-free and continuous. The
7.5 nm thin film shows a Tc(0) of 34 K, which is so far the highest Tc(0)
reported in MgB2 with the same thickness. The critical current density of
ultrathin MgB2 films below 10 nm is demonstrated for the first time as Jc ~
10^6 A cm^{-2} for the above 7.5 nm sample at 16 K. Our results reveal the
excellent superconducting properties of ultrathin MgB2 films with thicknesses
between 7.5 and 40 nm on Al2O3 substrate.Comment: 7 pages, 4 figures, 2 table
Collective state measurement of mesoscopic ensembles with single-atom resolution
For mesoscopic ensembles containing 100 or more atoms we measure the total
atom number and the number of atoms in a specific hyperfine state with
single-atom resolution. The measurement detects the atom-induced shift of the
resonance frequency of an optical cavity containing the ensemble. This work
extends the range of cavity-based detection with single-atom resolution by more
than an order of magnitude in atom number, and provides the readout capability
necessary for Heisenberg-limited interferometry with atomic ensembles.Comment: 5 pages, 4 pdf figure
Comparative study on the thermoelectric effect of parent oxypnictides LaAsO ( = Fe, Ni)
The thermopower and Nernst effect were investigated for undoped parent
compounds LaFeAsO and LaNiAsO. Both thermopower and Nernst signal in iron-based
LaFeAsO are significantly larger than those in nickel-based LaNiAsO.
Furthermore, abrupt changes in both thermopower and Nernst effect are observed
below the structural phase transition temperature and spin-density wave (SDW)
type antiferromagnetic (AFM) order temperature in Fe-based LaFeAsO. On the
other hand, Nernst effect is very small in the Ni-based LaNiAsO and it is
weakly temperature-dependent, reminiscent of the case in normal metals. We
suggest that the effect of SDW order on the spin scattering rate should play an
important role in the anomalous temperature dependence of Hall effect and
Nernst effect in LaFeAsO. The contrast behavior between the LaFeAsO and LaNiAsO
systems implies that the LaFeAsO system is fundamentally different from the
LaNiAsO system and this may provide clues to the mechanism of high
superconductivity in the Fe-based systems.Comment: 6 pages, 6 figure
- …
