30,222 research outputs found
Dundee Discussion Papers in Economics 107:Does consumption deviate from the permanent income path? An empirical study of UK data
Excitation of g modes in Wolf-Rayet stars by a deep opacity bump
We examine the stability of l=1 and l=2 g modes in a pair of nitrogen-rich
Wolf-Rayet stellar models characterized by differing hydrogen abundances. We
find that modes with intermediate radial orders are destabilized by a kappa
mechanism operating on an opacity bump at an envelope temperature log T ~ 6.25.
This `deep opacity bump' is due primarily to L-shell bound-free transitions of
iron. Periods of the unstable modes span ~ 11-21 hr in the model containing
some hydrogen, and ~ 3-12 hr in the hydrogen-depleted model. Based on the
latter finding, we suggest that self-excited g modes may be the source of the
9.8 hr-periodic variation of WR 123 recently reported by Lefevre et al. (2005).Comment: 5 pages, 3 figures, accepted by MNRAS letter
Orbital order in bilayer graphene at filling factor
In a graphene bilayer with Bernal stacking both and orbital
Landau levels have zero kinetic energy. An electronic state in the N=0 Landau
level consequently has three quantum numbers in addition to its guiding center
label: its spin, its valley index or , and an orbital quantum
number The two-dimensional electron gas (2DEG) in the bilayer supports
a wide variety of broken-symmetry states in which the pseudospins associated
these three quantum numbers order in a manner that is dependent on both filling
factor and the electric potential difference between the layers. In this
paper, we study the case of in an external field strong enough to
freeze electronic spins. We show that an electric potential difference between
layers drives a series of transitions, starting from interlayer-coherent states
(ICS) at small potentials and leading to orbitally coherent states (OCS) that
are polarized in a single layer. Orbital pseudospins carry electric dipoles
with orientations that are ordered in the OCS and have Dzyaloshinskii-Moriya
interactions that can lead to spiral instabilities. We show that the microwave
absorption spectra of ICSs, OCSs, and the mixed states that occur at
intermediate potentials are sharply distinct.Comment: 21 pages, 14 figure
Quantum Dots in Strong Magnetic Fields: Stability Criteria for the Maximum Density Droplet
In this article we discuss the ground state of a parabolically confined
quantum dots in the limit of very strong magnetic fields where the electron
system is completely spin-polarized and all electrons are in the lowest Landau
level. Without electron-electron interactions the ground state is a single
Slater determinant corresponding to a droplet centered on the minimum of the
confinement potential and occupying the minimum area allowed by the Pauli
exclusion principle. Electron-electron interactions favor droplets of larger
area. We derive exact criteria for the stability of the maximum density droplet
against edge excitations and against the introduction of holes in the interior
of the droplet. The possibility of obtaining exact results in the strong
magnetic field is related to important simplifications associated with broken
time-reversal symmetry in a strong magnetic field.Comment: 17 pages, 5 figures (not included), RevTeX 3.0. (UCF-CM-93-002
Quantum vortex dynamics in two-dimensional neutral superfluids
We derive an effective action for the vortex position degree-of-freedom in a
superfluid by integrating out condensate phase and density fluctuation
environmental modes. When the quantum dynamics of environmental fluctuations is
neglected, we confirm the occurrence of the vortex Magnus force and obtain an
expression for the vortex mass. We find that this adiabatic approximation is
valid only when the superfluid droplet radius , or the typical distance
between vortices, is very much larger than the coherence length . We go
beyond the adiabatic approximation numerically, accounting for the quantum
dynamics of environmental modes and capturing their dissipative coupling to
condensate dynamics. For the case of an optical-lattice superfluid we
demonstrate that vortex motion damping can be adjusted by tuning the ratio
between the tunneling energy and the on-site interaction energy . We
comment on the possibility of realizing vortex Landau level physics.Comment: 14 pages, 10 figures, accepted by PRA with corrected references and
typo
Coupling between Edge and Bulk in Strong-Field Quantum Dots
The maximum-density-droplet (MDD) state of quantum-dot electrons becomes
unstable at strong magnetic fields to the addition of interior holes. Using
exact diagonalization, we demonstrate that the first hole is located at the
center of the dot when the number of electrons is smaller than
and is located away from the center for larger dots. The separation between
field strengths at which additional holes are introduced becomes small for
large dots, explaining recent observations of a rapid increase in dot area when
the magnetic field is increased beyond the MDD stability limit. We comment on
correlations between interior hole and collective edge fluctuations, and on the
implications of these correlations for edge excitation models in bulk systems.Comment: 5 pages, 4 figure
- …
