28,429 research outputs found

    Non-linear excitations in 1D correlated insulators

    Full text link
    In this work we investigate charge transport in one-dimensional (1D) insulators via semi-classical and perturbative renormalization group (RG) methods. We consider the problem of electron-electron, electron-phonon and electron-two-level system interactions. We show that non-linear collective modes such as polarons and solitons are reponsible for transport. We find a new excitation in the Mott insulator: the polaronic soliton. We discuss the differences between band and Mott insulators in terms of their spin spectrum and obtain the charge and spin gaps in each one of these systems. We show that electron-electron interactions provide strong renormalizations of the energy scales in the problem.Comment: 29 page

    Squeezed-state generation in optical bistability

    Get PDF
    Experiments to generate squeezed states of light are described for a collection of two-level atoms within a high-finesse cavity. The investigation is conducted in a regime for which the weak-field coupling of atoms to the cavity mode produces a splitting in the normal mode structure of the atom-field system that is large compared with the atomic linewidth. Reductions in photocurrent noise of 30% (-1.55 dB) below the noise level set by the vacuum state of the field are observed in a balanced homodyne detector. A degree of squeezing of approximately 50% is inferred for the field state in the absence of propagation and detection losses. The observed spectrum of squeezing extends over a very broad range of frequencies (~±75 MHz), with the frequency of best squeezing corresponding to an offset from the optical carrier given by the normal mode splitting

    An Extended Huckel Theory based Atomistic Model for Graphene Nanoelectronics

    Full text link
    An atomistic model based on the spin-restricted extended Huckel theory (EHT) is presented for simulating electronic structure and I-V characteristics of graphene devices. The model is applied to zigzag and armchair graphene nano-ribbons (GNR) with and without hydrogen passivation, as well as for bilayer graphene. Further calculations are presented for electric fields in the nano-ribbon width direction and in the bilayer direction to show electronic structure modification. Finally, the EHT Hamiltonian and NEGF (Nonequilibrium Green's function) formalism are used for a paramagnetic zigzag GNR to show 2e2/h quantum conductance.Comment: 5 pages, 8 figure

    Temperature-dependent Fermi surface evolution in heavy fermion CeIrIn5

    Full text link
    In Cerium-based heavy electron materials, the 4f electron's magnetic moments bind to the itinerant quasiparticles to form composite heavy quasiparticles at low temperature. The volume of the Fermi surfacein the Brillouin zone incorporates the moments to produce a "large FS" due to the Luttinger theorem. When the 4f electrons are localized free moments, a "small FS" is induced since it contains only broad bands of conduction spd electrons. We have addressed theoretically the evolution of the heavy fermion FS as a function of temperature, using a first principles dynamical mean-field theory (DMFT) approach combined with density functional theory (DFT+DMFT). We focus on the archetypical heavy electrons in CeIrIn5, which is believed to be near a quantum critical point. Upon cooling, both the quantum oscillation frequencies and cyclotron masses show logarithmic scaling behavior (~ ln(T_0/T)) with different characteristic temperatures T_0 = 130 and 50 K, respectively. The resistivity coherence peak observed at T ~ 50 K is the result of the competition between the binding of incoherent 4f electrons to the spd conduction electrons at Fermi level and the formation of coherent 4f electrons.Comment: 5 pages main article,3 figures for the main article, 2 page Supplementary information, 2 figures for the Supplementary information. Supplementary movie 1 and 2 are provided on the webpage(http://www-ph.postech.ac.kr/~win/supple.html

    Quantization of Gauge Field Theories on the Front-Form without Gauge Constraints I : The Abelian Case

    Full text link
    Recently, we have proposed a new front-form quantization which treated both the x+x^{+} and the xx^{-} coordinates as front-form 'times.' This quantization was found to preserve parity explicitly. In this paper we extend this construction to local Abelian gauge fields . We quantize this theory using a method proposed originally by Faddeev and Jackiw . We emphasize here the feature that quantizing along both x+x^+ and xx^- , gauge theories does not require extra constraints (also known as 'gauge conditions') to determine the solution uniquely.Comment: 18 pages, phyzz

    A Nonrelativistic Chiral Soliton in One Dimension

    Full text link
    I analyze the one-dimensional, cubic Schr\"odinger equation, with nonlinearity constructed from the current density, rather than, as is usual, from the charge density. A soliton solution is found, where the soliton moves only in one direction. Relation to higher-dimensional Chern--Simons theory is indicated. The theory is quantized and results for the two-body quantum problem agree at weak coupling with those coming from a semiclassical quantization of the soliton.Comment: 11 pages, Latex2

    Exact wave-packet decoherence dynamics in a discrete spectrum environment

    Full text link
    We find an exact analytical solution of the reduced density matrix from the Feynman-Vernon influence functional theory for a wave packet influenced by an environment containing a few discrete modes. We obtain two intrinsic energy scales relating to the time scales of the system and the environment. Different relationship between these two scales alters the overall form of the solution of the system. We also introduce a decoherence measure for a single wave packet which is defined as the ratio of Schr\"odinger uncertainty over the delocalization extension of the wave packet and characterizes the time-evolution behavior of the off-diagonal reduced density matrix element. We utilize the exact solution and the docherence measure to study the wave packet decoherence dynamics. We further demonstrate how the dynamical diffusion of the wave packet leads to non-Markovian decoherence in such a microscopic environment.Comment: 12 pages, 2 figure
    corecore