3,645 research outputs found
Perspectives on radioactive waste disposal: A consideration of economic efficiency and intergenerational equity
There are both internal and external pressures on the U.S. Department of Energy to reduce the estimated costs of isolating radioactive waste, 57 billion for high level waste at Yucca Mountain. The question arises whether economic analyses would add to the decision-making process to reduce costs yet maintain the same level of radiological protection. This paper examines the advantages and disadvantages of using cost-benefit analysis (CBA), a tool used to measure economic efficiency as an input for these decisions. Using a comparative research approach, we find that CBA analyses appear particularly applicable where the benefits and costs are in the near term. These findings can help policymakers become more informed on funding decisions and to develop public confidence in the merits of the program for waste disposal
From Spitzer Galaxy Photometry to Tully-Fisher Distances
This paper involves a data release of the observational campaign: Cosmicflows
with Spitzer (CFS). Surface photometry of the 1270 galaxies constituting the
survey is presented. An additional ~ 400 galaxies from various other Spitzer
surveys are also analyzed. CFS complements the Spitzer Survey of Stellar
Structure in Galaxies, that provides photometry for an additional 2352
galaxies, by extending observations to low galactic latitudes (|b|<30 degrees).
Among these galaxies are calibrators, selected in K band, of the Tully-Fisher
relation. The addition of new calibrators demonstrate the robustness of the
previously released calibration. Our estimate of the Hubble constant using
supernova host galaxies is unchanged, H0 = 75.2 +/- 3.3 km/s/Mpc.
Distance-derived radial peculiar velocities, for the 1935 galaxies with all the
available parameters, will be incorporated into a new data release of the
Cosmicflows project. The size of the previous catalog will be increased by 20%,
including spatial regions close to the Zone of Avoidance.Comment: Accepted for publication in MNRAS, 16 pages, 14 figures, 6 table
5-micron photometry of late-type dwarfs
We present narrowband-M photometry of nine low-mass dwarfs with spectral
types ranging from M2.5 to L0.5. Combining the (L'-M') colours derived from our
observations with data from the literature, we find colours consistent with a
Rayleigh-Jeans flux distribution for spectral types earlier than M5, but
enhanced F_3.8/F_4.7 flux ratios (negative (L'-M') colours) at later spectral
types. This probably reflects increased absorption at M' due to the CO
fundamental band. We compare our results against recent model predictions and
briefly discuss the implications.Comment: accepted for the Astronomical Journa
A search for L dwarf binary systems
We present analysis of HST Planetary Camera images of twenty L dwarfs
identified in the course of the Two Micron All-Sky Survey. Four of the targets
have faint, red companions at separations between 0.07 and 0.29 arcseconds (1.6
to 7.6 AU). In three cases, the bolometric magnitudes of the components differ
by less than 0.3 magnitudes. Since the cooling rate for brown dwarfs is a
strong function of mass, similarity in luminosities implies comparable masses.
The faint component in the 2M0850 system, however, is over 1.3 magnitudes
fainter than the primary in the I-band, and ~0.8 magnitudes fainter in M(bol).
Indeed, 2M0850B is ~0.8 magnitudes fainter in I than the lowest luminosity L
dwarf currently known, while the absolute magnitude we deduce at J is almost
identical with M_J for Gl 229B. Theoretical models indicate a mass ratio of
\~0.75. The mean separation of the L dwarf binaries in the current sample is
smaller by a factor of two than amongst M dwarfs. We discuss the implications
of these results for the temperature scale in the L/T transition region and for
the binary frequency amongst L dwarfs.Comment: 38 pages, 11 figures; accepted for A
Confidence and Backaction in the Quantum Filter Equation
We study the confidence and backaction of state reconstruction based on a
continuous weak measurement and the quantum filter equation. As a physical
example we use the traditional model of a double quantum dot being continuously
monitored by a quantum point contact. We examine the confidence of the estimate
of a state constructed from the measurement record, and the effect of
backaction of that measurement on that state. Finally, in the case of general
measurements we show that using the relative entropy as a measure of confidence
allows us to define the lower bound on the confidence as a type of quantum
discord.Comment: 9 pages, 6 figure
The Calibration of the WISE W1 and W2 Tully-Fisher Relation
In order to explore local large-scale structures and velocity fields,
accurate galaxy distance measures are needed. We now extend the well-tested
recipe for calibrating the correlation between galaxy rotation rates and
luminosities -- capable of providing such distance measures -- to the all-sky,
space-based imaging data from the Wide-field Infrared Survey Explorer (WISE) W1
(m) and W2 (m) filters. We find a linewidth to absolute
magnitude correlation (known as the Tully-Fisher Relation, TFR) of
(0.54
magnitudes rms) and (0.56 magnitudes rms) from 310 galaxies in 13 clusters. We update the
I-band TFR using a sample 9% larger than in Tully & Courtois (2012). We derive
(0.46 magnitudes
rms). The WISE TFRs show evidence of curvature. Quadratic fits give
(0.52 magnitudes rms) and (0.55
magnitudes rms). We apply an I-band -- WISE color correction to lower the
scatter and derive
and (both 0.46
magnitudes rms). Using our three independent TFRs (W1 curved, W2 curved and
I-band), we calibrate the UNION2 supernova Type Ia sample distance scale and
derive (stat) (sys) kms Mpc with 4%
total error.Comment: 22 page, 21 figures, accepted to ApJ, Table 1 data at
http://spartan.srl.caltech.edu/~neill/tfwisecal/table1.tx
Andromeda's Parachute: A Bright Quadruply Lensed Quasar at z=2.377
We present Keck Cosmic Web Imager spectroscopy of the four putative images of
the lensed quasar candidate J014709+463037 recently discovered by Berghea et
al. (2017). The data verify the source as a quadruply lensed, broad
absorption-line quasar having z_S = 2.377 +/- 0.007. We detect intervening
absorption in the FeII 2586, 2600, MgII 2796, 2803, and/or CIV 1548, 1550
transitions in eight foreground systems, three of which have redshifts
consistent with the photometric-redshift estimate reported for the lensing
galaxy (z_L ~ 0.57). By virtue of their positions on the sky, the source images
probe these absorbers over transverse physical scales of ~0.3-21 kpc,
permitting assessment of the variation in metal-line equivalent width W_r as a
function of sight-line separation. We measure differences in W_r,2796 of <40%
across all sight-line pairs subtending 7-21 kpc, suggestive of a high degree of
spatial coherence for MgII-absorbing material. W_r,2600 is observed to vary by
>50% over the same scales across the majority of sight-line pairs, while CIV
absorption exhibits a wide range in W_r,1548 differences of ~5-80% within
transverse distances less than ~3 kpc. J014709+463037 is one of only a handful
of z > 2 quadruply lensed systems for which all four source images are very
bright (r = 15.4-17.7 mag) and are easily separated in ground-based seeing
conditions. As such, it is an ideal candidate for higher-resolution
spectroscopy probing the spatial variation in the kinematic structure and
physical state of intervening absorbers.Comment: Submitted to ApJL. 9 pages, 3 figures. Uses aastex61 forma
Charge Exchange Spectra of Hydrogenic and He-like Iron
We present H-like Fe XXVI and He-like Fe XXV charge-exchange spectra
resulting from collisions of highly charged iron with N2 gas at an energy of 10
eV/amu in an electron beam ion trap. Although individual high-n emission lines
are not resolved in our measurements, we observe that the most likely level for
Fe25+ --> Fe24+ electron capture is n~9, in line with expectations, while the
most likely value for Fe26+ --> Fe25+ charge exchange is significantly higher.
In the Fe XXV spectrum, the K-alpha emission feature dominates, whether
produced via charge exchange or collisional excitation. The K-alpha centroid is
lower in energy for the former case than the latter (6666 versus 6685 eV,
respectively), as expected because of the strong enhancement of emission from
the forbidden and intercombination lines, relative to the resonance line, in
charge-exchange spectra. In contrast, the Fe XXVI high-n Lyman lines have a
summed intensity greater than that of Ly-alpha, and are substantially stronger
than predicted from theoretical calculations of charge exchange with atomic H.
We conclude that the angular momentum distribution resulting from electron
capture using a multi-electron target gas is significantly different from that
obtained with H, resulting in the observed high-n enhancement. A discussion is
presented of the relevance of our results to studies of diffuse Fe emission in
the Galactic Center and Galactic Ridge, particularly with ASTRO-E2/Suzaku.Comment: 16 pages, 4 figures (3 color), accepted by Ap
Correlations in Two-Dimensional Vortex Liquids
We report on a high temperature perturbation expansion study of the
superfluid-density spatial correlation function of a Ginzburg-Landau-model
superconducting film in a magnetic field. We have derived a closed form which
expresses the contribution to the correlation function from each graph of the
perturbation theory in terms of the number of Euler paths around appropriate
subgraphs. We have enumerated all graphs appearing out to 10-th order in the
expansion and have evaluated their contributions to the correlation function.
Low temperature correlation functions, obtained using Pad\'{e} approximants,
are in good agreement with Monte Carlo simulation results and show that the
vortex-liquid becomes strongly correlated at temperatures well above the vortex
solidification temperature.Comment: 18 pages (RevTeX 3.0) and 4 figures, available upon request,
IUCM93-01
- …
