567 research outputs found
The Arabidopsis leucine-rich repeat receptor kinase MIK2/LRR-KISS connects cell wall integrity sensing, root growth and response to abiotic and biotic stresses
Plants actively perceive and respond to perturbations in their cell walls which arise during growth, biotic and abiotic stresses. However, few components involved in plant cell wall integrity sensing have been described to date. Using a reverse-genetic approach, we identified the Arabidopsis thaliana leucine-rich repeat receptor kinase MIK2 as an important regulator of cell wall damage responses triggered upon cellulose biosynthesis inhibition. Indeed, loss-of-function mik2 alleles are strongly affected in immune marker gene expression, jasmonic acid production and lignin deposition. MIK2 has both overlapping and distinct functions with THE1, a malectin-like receptor kinase previously proposed as cell wall integrity sensor. In addition, mik2 mutant plants exhibit enhanced leftward root skewing when grown on vertical plates. Notably, natural variation in MIK2 (also named LRR-KISS) has been correlated recently to mild salt stress tolerance, which we could confirm using our insertional alleles. Strikingly, both the increased root skewing and salt stress sensitivity phenotypes observed in the mik2 mutant are dependent on THE1. Finally, we found that MIK2 is required for resistance to the fungal root pathogen Fusarium oxysporum. Together, our data identify MIK2 as a novel component in cell wall integrity sensing and suggest that MIK2 is a nexus linking cell wall integrity sensing to growth and environmental cues
Identification of glucose transporters in Aspergillus nidulans
o characterize the mechanisms involved in glucose transport, in the filamentous fungus Aspergillus nidulans, we have identified four glucose transporter encoding genes hxtB-E. We evaluated the ability of hxtB-E to functionally complement the Saccharomyces cerevisiae EBY.VW4000 strain that is unable to grow on glucose, fructose, mannose or galactose as single carbon source. In S. cerevisiae HxtB-E were targeted to the plasma membrane. The expression of HxtB, HxtC and HxtE was able to restore growth on glucose, fructose, mannose or galactose, indicating that these transporters accept multiple sugars as a substrate through an energy dependent process. A tenfold excess of unlabeled maltose, galactose, fructose, and mannose were able to inhibit glucose uptake to different levels (50 to 80 %) in these s. cerevisiae complemented strains. Moreover, experiments with cyanide-m-chlorophenylhydrazone (CCCP), strongly suggest that hxtB, -C, and –E mediate glucose transport via active proton symport. The A. nidulans ΔhxtB, ΔhxtC or ΔhxtE null mutants showed ~2.5-fold reduction in the affinity for glucose, while ΔhxtB and -C also showed a 2-fold reduction in the capacity for glucose uptake. The ΔhxtD mutant had a 7.8-fold reduction in affinity, but a 3-fold increase in the capacity for glucose uptake. However, only the ΔhxtB mutant strain showed a detectable decreased rate of glucose consumption at low concentrations and an increased resistance to 2-deoxyglucose.The authors would like to thank the Fundacao de Amparo a Pesquisa do Estado de Sao Paulo and Conselho Nacional de Desenvolvimento Cientifico e Tecnologico, Brazil for financial support. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript
Abstracts of the 33rd International Austrian Winter Symposium : Zell am See, Austria. 24-27 January 2018.
Self-Assembly of Low-Dimensional Arrays of Thiophene Oligomers from Solution on Solid Substrates
Self-Assembly of Low-Dimensional Arrays of Thiophene Oligomers from Solution on Solid Substrates
An mRNA decapping mutant deficient in P body assembly limits mRNA stabilization in response to osmotic stress
Yeast is exposed to changing environmental conditions and must adapt its genetic program to provide a homeostatic intracellular environment. An important stress for yeast in the wild is high osmolarity. A key response to this stress is increased mRNA stability primarily by the inhibition of deadenylation. We previously demonstrated that mutations in decapping activators (edc3∆ lsm4∆C), which result in defects in P body assembly, can destabilize mRNA under unstressed conditions. We wished to examine whether mRNA would be destabilized in the edc3∆ lsm4∆C mutant as compared to the wild-type in response to osmotic stress, when P bodies are intense and numerous. Our results show that the edc3∆ lsm4∆C mutant limits the mRNA stability in response to osmotic stress, while the magnitude of stabilization was similar as compared to the wild-type. The reduced mRNA stability in the edc3∆ lsm4∆C mutant was correlated with a shorter PGK1 poly(A) tail. Similarly, the MFA2 mRNA was more rapidly deadenylated as well as significantly stabilized in the ccr4∆ deadenylation mutant in the edc3∆ lsm4∆C background. These results suggest a role for these decapping factors in stabilizing mRNA and may implicate P bodies as sites of reduced mRNA degradation
Response to correspondence concerning: “Early hydroxychloroquine but not chloroquine use reduces ICU admission in COVID-19 patients”
The Small Firm Exemption and the Single Employer Doctrine in Employment Discrimination Law
Cognitive impairment in human chronic Chagas' disease
We proposed to investigate subclinical cognitive impairment secondary to chronic Chagas' disease (CCD). No similar study was previously done. The neuropsychological performance of 45 chronic Chagasic patients and 26 matched controls (age, education place and years of residency in endemic area) was compared using the Mini Mental State Exam (MMSE), Weschler Memory Scale (WMS) and the Weschler Adult Intelligent Scale (WAIS). Non-parametric tests and Chi2 were used to compare group means and multivariate statistics in two way frequency tables for measures of independence and association of categorical variables with the disease. Results: Chagasic patients showed lower MMSE scores (p<004), poor orientation (p<.004), and attention (p<.007). Lower WMS MQ were associated with CCD (Chi2 5.9; p<.01; Fisher test p<.02). Lower WAIS IQ were associated with CCD (Chi2 6.3, p<.01; Fisher test p<.01) being the digit symbol (p<.03), picture completion (p<.03), picture arrangement (p<.01) and object assembly (p<.03) subtests the most affected. The impairment in non-verbal reasoning, speed of information processing, problem solving, learning and sequencing observed in chronic Chagas disease patients resembles the cognitive dysfunction associated with white matter disease
- …
