2,285,913 research outputs found

    Fixed gain and adaptive techniques for rotorcraft vibration control

    Get PDF
    The results of an analysis effort performed to demonstrate the feasibility of employing approximate dynamical models and frequency shaped cost functional control law desgin techniques for helicopter vibration suppression are presented. Both fixed gain and adaptive control designs based on linear second order dynamical models were implemented in a detailed Rotor Systems Research Aircraft (RSRA) simulation to validate these active vibration suppression control laws. Approximate models of fuselage flexibility were included in the RSRA simulation in order to more accurately characterize the structural dynamics. The results for both the fixed gain and adaptive approaches are promising and provide a foundation for pursuing further validation in more extensive simulation studies and in wind tunnel and/or flight tests

    Gauge invariant formalism for second order perturbations of Schwarzschild spacetimes

    Get PDF
    The ``close limit,'' a method based on perturbations of Schwarzschild spacetime, has proved to be a very useful tool for finding approximate solutions to models of black hole collisions. Calculations carried out with second order perturbation theory have been shown to give the limits of applicability of the method without the need for comparison with numerical relativity results. Those second order calculations have been carried out in a fixed coordinate gauge, a method that entails conceptual and computational difficulties. Here we demonstrate a gauge invariant approach to such calculations. For a specific set of models (requiring head on collisions and quadrupole dominance of both the first and second order perturbations), we give a self contained gauge invariant formalism. Specifically, we give (i) wave equations and sources for first and second order gauge invariant wave functions; (ii) the prescription for finding Cauchy data for those equations from initial values of the first and second fundamental forms on an initial hypersurface; (iii) the formula for computing the gravitational wave power from the evolved first and second order wave functions.Comment: 18 pages, no figure
    corecore