10,446 research outputs found
Optical Control of a Quantum Rotor
The possibility to coherently control a quantum rotor is investigated
theoretically. The rotor is realized by an antiferromagnetic spin-1
Bose-Einstein condensate, trapped in the optical field of a Fabry-Perot
resonator. By tuning the pumping field of the resonator, coherent control over
the rotor is achieved. The technique is illustrated by the numerical simulation
of a protocol that transforms the rotor's ground state into a squeezed state.
The detection of the squeezed state via measurement of intensity-correlations
of the cavity field is proposed.Comment: 5 pages, 3 figure
Initial condition effect on pressure waves in an axisymmetric jet
A pair of microphones (separated axially by 5.08 cm and laterally by 1.3 cm) are placed on either side of the jet centerline to investigate coherent pressure fluctuations in an axisymmetric jet at Strouhal numbers less than unity. Auto-spectra, transfer-function, and coherence measurements are made for a tripped and untripped boundary layer initial condition. It was found that coherent acoustic pressure waves originating in the upstream plenum chamber propagate a greater distance downstream for the tripped initial condition than for the untripped initial condition. In addition, for the untripped initial condition the development of the coherent hydrodynamic pressure waves shifts downstream
Nuclear DDX3 expression predicts poor outcome in colorectal and breast cancer
Purpose: DEAD box protein 3 (DDX3) is an RNA helicase with oncogenic properties that shuttles between the cytoplasm and nucleus. The majority of DDX3 is found in the cytoplasm, but a subset of tumors has distinct nuclear DDX3 localization of yet unknown biological significance. This study aimed to evaluate the significance of and mechanisms behind nuclear DDX3 expression in colorectal and breast cancer.
Methods: Expression of nuclear DDX3 and the nuclear exporter chromosome region maintenance 1 (CRM1) was evaluated by immunohistochemistry in 304 colorectal and 292 breast cancer patient samples. Correlations between the subcellular localization of DDX3 and CRM1 and the difference in overall survival between patients with and without nuclear DDX3 were studied. In addition, DDX3 mutants were created for in vitro evaluation of the mechanism behind nuclear retention of DDX3.
Results: DDX3 was present in the nucleus of 35% of colorectal and 48% of breast cancer patient samples and was particularly strong in the nucleolus. Nuclear DDX3 correlated with worse overall survival in both colorectal (hazard ratio [HR] 2.34, P<0.001) and breast cancer (HR 2.39, P=0.004) patients. Colorectal cancers with nuclear DDX3 expression more often had cytoplasmic expression of the nuclear exporter CRM1 (relative risk 1.67, P=0.04). In vitro analysis of DDX3 deletion mutants demonstrated that CRM1-mediated export was most dependent on the N-terminal nuclear export signal.
Conclusion: Overall, we conclude that nuclear DDX3 is partially CRM1-mediated and predicts worse survival in colorectal and breast cancer patients, putting it forward as a target for therapeutic intervention with DDX3 inhibitors under development in these cancer types
The Wolf effect and the Redshift of Quasars
We consider a simple model, based on currently accepted models for active
galactic nuclei, for a quasi-stellar object (QSO or ``quasar'') and examine the
influence that correlation- induced spectral changes (``The Wolf Effect'') may
have upon the redshifts of the optical emission lines.Comment: 13 pages, 3 figures. To be published in J. European Optical Soc. A:
Pure and Applied Optic
An Alternative to Compactification
Conventional wisdom states that Newton's force law implies only four
non-compact dimensions. We demonstrate that this is not necessarily true in the
presence of a non-factorizable background geometry. The specific example we
study is a single 3-brane embedded in five dimensions. We show that even
without a gap in the Kaluza-Klein spectrum, four-dimensional Newtonian and
general relativistic gravity is reproduced to more than adequate precision.Comment: LaTex, 9 page
Quantum and Classical Dynamics of a BEC in a Large-Period Optical Lattice
We experimentally investigate diffraction of a Rb-87 Bose-Einstein condensate
from a 1D optical lattice. We use a range of lattice periods and timescales,
including those beyond the Raman-Nath limit. We compare the results to quantum
mechanical and classical simulations, with quantitative and qualitative
agreement, respectively. The classical simulation predicts that the envelope of
the time-evolving diffraction pattern is shaped by caustics: singularities in
the phase space density of classical trajectories. This behavior becomes
increasingly clear as the lattice period grows.Comment: 7 pages, 6 figure
Optimized coupling of cold atoms into a fiber using a blue-detuned hollow-beam funnel
We theoretically investigate the process of coupling cold atoms into the core
of a hollow-core photonic-crystal optical fiber using a blue-detuned
Laguerre-Gaussian beam. In contrast to the use of a red-detuned Gaussian beam
to couple the atoms, the blue-detuned hollow-beam can confine cold atoms to the
darkest regions of the beam thereby minimizing shifts in the internal states
and making the guide highly robust to heating effects. This single optical beam
is used as both a funnel and guide to maximize the number of atoms into the
fiber. In the proposed experiment, Rb atoms are loaded into a magneto-optical
trap (MOT) above a vertically-oriented optical fiber. We observe a
gravito-optical trapping effect for atoms with high orbital momentum around the
trap axis, which prevents atoms from coupling to the fiber: these atoms lack
the kinetic energy to escape the potential and are thus trapped in the laser
funnel indefinitely. We find that by reducing the dipolar force to the point at
which the trapping effect just vanishes, it is possible to optimize the
coupling of atoms into the fiber. Our simulations predict that by using a
low-power (2.5 mW) and far-detuned (300 GHz) Laguerre-Gaussian beam with a
20-{\mu}m radius core hollow-fiber it is possible to couple 11% of the atoms
from a MOT 9 mm away from the fiber. When MOT is positioned further away,
coupling efficiencies over 50% can be achieved with larger core fibers.Comment: 11 pages, 12 figures, 1 tabl
Topological phases and topological entropy of two-dimensional systems with finite correlation length
We elucidate the topological features of the entanglement entropy of a region
in two dimensional quantum systems in a topological phase with a finite
correlation length . Firstly, we suggest that simpler reduced quantities,
related to the von Neumann entropy, could be defined to compute the topological
entropy. We use our methods to compute the entanglement entropy for the ground
state wave function of a quantum eight-vertex model in its topological phase,
and show that a finite correlation length adds corrections of the same order as
the topological entropy which come from sharp features of the boundary of the
region under study. We also calculate the topological entropy for the ground
state of the quantum dimer model on a triangular lattice by using a mapping to
a loop model. The topological entropy of the state is determined by loop
configurations with a non-trivial winding number around the region under study.
Finally, we consider extensions of the Kitaev wave function, which incorporate
the effects of electric and magnetic charge fluctuations, and use it to
investigate the stability of the topological phase by calculating the
topological entropy.Comment: 17 pages, 4 figures, published versio
Neutron optical beam splitter from holographically structured nanoparticle-polymer composites
We report a breakthrough in the search for versatile diffractive elements for
cold neutrons. Nanoparticles are spatially arranged by holographical means in a
photopolymer. These grating structures show remarkably efficient diffraction of
cold neutrons up to about 50% for effective thicknesses of only 200 micron.
They open up a profound perspective for next generation neutron-optical devices
with the capability to tune or modulate the neutron diffraction efficiency.Comment: 4 pages, 2 figure
Numerical Investigation of Shock-Train Response to Inflow Boundary-Layer Variations
Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/143113/1/1.J055333.pd
- …
