10,446 research outputs found

    Optical Control of a Quantum Rotor

    Full text link
    The possibility to coherently control a quantum rotor is investigated theoretically. The rotor is realized by an antiferromagnetic spin-1 Bose-Einstein condensate, trapped in the optical field of a Fabry-Perot resonator. By tuning the pumping field of the resonator, coherent control over the rotor is achieved. The technique is illustrated by the numerical simulation of a protocol that transforms the rotor's ground state into a squeezed state. The detection of the squeezed state via measurement of intensity-correlations of the cavity field is proposed.Comment: 5 pages, 3 figure

    Initial condition effect on pressure waves in an axisymmetric jet

    Get PDF
    A pair of microphones (separated axially by 5.08 cm and laterally by 1.3 cm) are placed on either side of the jet centerline to investigate coherent pressure fluctuations in an axisymmetric jet at Strouhal numbers less than unity. Auto-spectra, transfer-function, and coherence measurements are made for a tripped and untripped boundary layer initial condition. It was found that coherent acoustic pressure waves originating in the upstream plenum chamber propagate a greater distance downstream for the tripped initial condition than for the untripped initial condition. In addition, for the untripped initial condition the development of the coherent hydrodynamic pressure waves shifts downstream

    Nuclear DDX3 expression predicts poor outcome in colorectal and breast cancer

    Get PDF
    Purpose: DEAD box protein 3 (DDX3) is an RNA helicase with oncogenic properties that shuttles between the cytoplasm and nucleus. The majority of DDX3 is found in the cytoplasm, but a subset of tumors has distinct nuclear DDX3 localization of yet unknown biological significance. This study aimed to evaluate the significance of and mechanisms behind nuclear DDX3 expression in colorectal and breast cancer. Methods: Expression of nuclear DDX3 and the nuclear exporter chromosome region maintenance 1 (CRM1) was evaluated by immunohistochemistry in 304 colorectal and 292 breast cancer patient samples. Correlations between the subcellular localization of DDX3 and CRM1 and the difference in overall survival between patients with and without nuclear DDX3 were studied. In addition, DDX3 mutants were created for in vitro evaluation of the mechanism behind nuclear retention of DDX3. Results: DDX3 was present in the nucleus of 35% of colorectal and 48% of breast cancer patient samples and was particularly strong in the nucleolus. Nuclear DDX3 correlated with worse overall survival in both colorectal (hazard ratio [HR] 2.34, P<0.001) and breast cancer (HR 2.39, P=0.004) patients. Colorectal cancers with nuclear DDX3 expression more often had cytoplasmic expression of the nuclear exporter CRM1 (relative risk 1.67, P=0.04). In vitro analysis of DDX3 deletion mutants demonstrated that CRM1-mediated export was most dependent on the N-terminal nuclear export signal. Conclusion: Overall, we conclude that nuclear DDX3 is partially CRM1-mediated and predicts worse survival in colorectal and breast cancer patients, putting it forward as a target for therapeutic intervention with DDX3 inhibitors under development in these cancer types

    The Wolf effect and the Redshift of Quasars

    Full text link
    We consider a simple model, based on currently accepted models for active galactic nuclei, for a quasi-stellar object (QSO or ``quasar'') and examine the influence that correlation- induced spectral changes (``The Wolf Effect'') may have upon the redshifts of the optical emission lines.Comment: 13 pages, 3 figures. To be published in J. European Optical Soc. A: Pure and Applied Optic

    An Alternative to Compactification

    Get PDF
    Conventional wisdom states that Newton's force law implies only four non-compact dimensions. We demonstrate that this is not necessarily true in the presence of a non-factorizable background geometry. The specific example we study is a single 3-brane embedded in five dimensions. We show that even without a gap in the Kaluza-Klein spectrum, four-dimensional Newtonian and general relativistic gravity is reproduced to more than adequate precision.Comment: LaTex, 9 page

    Quantum and Classical Dynamics of a BEC in a Large-Period Optical Lattice

    Full text link
    We experimentally investigate diffraction of a Rb-87 Bose-Einstein condensate from a 1D optical lattice. We use a range of lattice periods and timescales, including those beyond the Raman-Nath limit. We compare the results to quantum mechanical and classical simulations, with quantitative and qualitative agreement, respectively. The classical simulation predicts that the envelope of the time-evolving diffraction pattern is shaped by caustics: singularities in the phase space density of classical trajectories. This behavior becomes increasingly clear as the lattice period grows.Comment: 7 pages, 6 figure

    Optimized coupling of cold atoms into a fiber using a blue-detuned hollow-beam funnel

    Full text link
    We theoretically investigate the process of coupling cold atoms into the core of a hollow-core photonic-crystal optical fiber using a blue-detuned Laguerre-Gaussian beam. In contrast to the use of a red-detuned Gaussian beam to couple the atoms, the blue-detuned hollow-beam can confine cold atoms to the darkest regions of the beam thereby minimizing shifts in the internal states and making the guide highly robust to heating effects. This single optical beam is used as both a funnel and guide to maximize the number of atoms into the fiber. In the proposed experiment, Rb atoms are loaded into a magneto-optical trap (MOT) above a vertically-oriented optical fiber. We observe a gravito-optical trapping effect for atoms with high orbital momentum around the trap axis, which prevents atoms from coupling to the fiber: these atoms lack the kinetic energy to escape the potential and are thus trapped in the laser funnel indefinitely. We find that by reducing the dipolar force to the point at which the trapping effect just vanishes, it is possible to optimize the coupling of atoms into the fiber. Our simulations predict that by using a low-power (2.5 mW) and far-detuned (300 GHz) Laguerre-Gaussian beam with a 20-{\mu}m radius core hollow-fiber it is possible to couple 11% of the atoms from a MOT 9 mm away from the fiber. When MOT is positioned further away, coupling efficiencies over 50% can be achieved with larger core fibers.Comment: 11 pages, 12 figures, 1 tabl

    Topological phases and topological entropy of two-dimensional systems with finite correlation length

    Full text link
    We elucidate the topological features of the entanglement entropy of a region in two dimensional quantum systems in a topological phase with a finite correlation length ξ\xi. Firstly, we suggest that simpler reduced quantities, related to the von Neumann entropy, could be defined to compute the topological entropy. We use our methods to compute the entanglement entropy for the ground state wave function of a quantum eight-vertex model in its topological phase, and show that a finite correlation length adds corrections of the same order as the topological entropy which come from sharp features of the boundary of the region under study. We also calculate the topological entropy for the ground state of the quantum dimer model on a triangular lattice by using a mapping to a loop model. The topological entropy of the state is determined by loop configurations with a non-trivial winding number around the region under study. Finally, we consider extensions of the Kitaev wave function, which incorporate the effects of electric and magnetic charge fluctuations, and use it to investigate the stability of the topological phase by calculating the topological entropy.Comment: 17 pages, 4 figures, published versio

    Neutron optical beam splitter from holographically structured nanoparticle-polymer composites

    Full text link
    We report a breakthrough in the search for versatile diffractive elements for cold neutrons. Nanoparticles are spatially arranged by holographical means in a photopolymer. These grating structures show remarkably efficient diffraction of cold neutrons up to about 50% for effective thicknesses of only 200 micron. They open up a profound perspective for next generation neutron-optical devices with the capability to tune or modulate the neutron diffraction efficiency.Comment: 4 pages, 2 figure

    Numerical Investigation of Shock-Train Response to Inflow Boundary-Layer Variations

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/143113/1/1.J055333.pd
    corecore