2,119 research outputs found
Privacy Mining from IoT-based Smart Homes
Recently, a wide range of smart devices are deployed in a variety of
environments to improve the quality of human life. One of the important
IoT-based applications is smart homes for healthcare, especially for elders.
IoT-based smart homes enable elders' health to be properly monitored and taken
care of. However, elders' privacy might be disclosed from smart homes due to
non-fully protected network communication or other reasons. To demonstrate how
serious this issue is, we introduce in this paper a Privacy Mining Approach
(PMA) to mine privacy from smart homes by conducting a series of deductions and
analyses on sensor datasets generated by smart homes. The experimental results
demonstrate that PMA is able to deduce a global sensor topology for a smart
home and disclose elders' privacy in terms of their house layouts.Comment: This paper, which has 11 pages and 7 figures, has been accepted BWCCA
2018 on 13th August 201
Bayesian Estimation of Mixed Multinomial Logit Models: Advances and Simulation-Based Evaluations
Variational Bayes (VB) methods have emerged as a fast and
computationally-efficient alternative to Markov chain Monte Carlo (MCMC)
methods for scalable Bayesian estimation of mixed multinomial logit (MMNL)
models. It has been established that VB is substantially faster than MCMC at
practically no compromises in predictive accuracy. In this paper, we address
two critical gaps concerning the usage and understanding of VB for MMNL. First,
extant VB methods are limited to utility specifications involving only
individual-specific taste parameters. Second, the finite-sample properties of
VB estimators and the relative performance of VB, MCMC and maximum simulated
likelihood estimation (MSLE) are not known. To address the former, this study
extends several VB methods for MMNL to admit utility specifications including
both fixed and random utility parameters. To address the latter, we conduct an
extensive simulation-based evaluation to benchmark the extended VB methods
against MCMC and MSLE in terms of estimation times, parameter recovery and
predictive accuracy. The results suggest that all VB variants with the
exception of the ones relying on an alternative variational lower bound
constructed with the help of the modified Jensen's inequality perform as well
as MCMC and MSLE at prediction and parameter recovery. In particular, VB with
nonconjugate variational message passing and the delta-method (VB-NCVMP-Delta)
is up to 16 times faster than MCMC and MSLE. Thus, VB-NCVMP-Delta can be an
attractive alternative to MCMC and MSLE for fast, scalable and accurate
estimation of MMNL models
Effects of vitamin e and zinc supplementation on antioxidants in beta thalassemia major patients
Objective: In beta thalassemic patients, tissue damage occurs due to oxidative stress and it happens because of the accumulation of iron in the body. This study was conducted to determine the effect of zinc and vitamin E supplementation on antioxidant status in beta-thalassemic major patients. Methods: This double blind randomized clinical trial was carried out on 120 beta thalassemic patients older than 18 years. Patients were randomly categorized in four groups. Zinc (50mg/day) and vitamin E (400mg/day) supplements were administered for former and latter group, respectively. In the third group both supplements were administered in similar doses. The fourth (control) group received no supplement. The effect of supplementations on serum zinc and vitamin E, superoxide dismutase (SOD), glutathione peroxidase (GPX), total antioxidant capacity (TAC) and body mass index (BMI) were measured at the beginning and the end of the study. Findings: Serum zinc levels in group 1 and 3 were significantly increased (P<0.007 and P<0.005, respectively). Serum vitamin E levels in group 2 and 3 were also increased significantly (P<0.001). Mean GPX activity in group1, 2 and 3 decreased significantly (P<0.015, P<0.032 and P<0.029, respectively). Mean SOD activity and TAC did not show significant change after supplementation. BMI had significant increase in all treated groups (P<0.001). Conclusion: Our results suggest that beta thalassemic patients have enhanced oxidative stress and administration of selective antioxidants may preclude oxidative damage. © 2011 by Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, All rights reserved
Non-Fourier heat transport in metal-dielectric core-shell nanoparticles under ultrafast laser pulse excitation
Relaxation dynamics of embedded metal nanoparticles after ultrafast laser
pulse excitation is driven by thermal phenomena of different origins the
accurate description of which is crucial for interpreting experimental results:
hot electron gas generation, electron-phonon coupling, heat transfer to the
particle environment and heat propagation in the latter. Regardingthis last
mechanism, it is well known that heat transport in nanoscale structures and/or
at ultrashort timescales may deviate from the predictions of the Fourier law.
In these cases heat transport may rather be described by the Boltzmann
transport equation. We present a numerical model allowing us to determine the
electron and lattice temperature dynamics in a spherical gold nanoparticle core
under subpicosecond pulsed excitation, as well as that of the surrounding shell
dielectric medium. For this, we have used the electron-phonon coupling equation
in the particle with a source term linked with the laser pulse absorption, and
the ballistic-diffusive equations for heat conduction in the host medium.
Either thermalizing or adiabatic boundary conditions have been considered at
the shell external surface. Our results show that the heat transfer rate from
the particle to the matrix can be significantly smaller than the prediction of
Fourier's law. Consequently, the particle temperature rise is larger and its
cooling dynamics might be slower than that obtained by using Fourier's law.
This difference is attributed to the nonlocal and nonequilibrium heat
conduction in the vicinity of the core nanoparticle. These results are expected
to be of great importance for analyzing pump-probe experiments performed on
single nanoparticles or nanocomposite media
- …
