48 research outputs found
Qualitative study exploring the phenomenon of multiple electronic prescribing systems within single hospital organisations
BACKGROUND: A previous census of electronic prescribing (EP) systems in England showed that more than half of hospitals with EP reported more than one EP system within the same hospital. Our objectives were to describe the rationale for having multiple EP systems within a single hospital, and to explore perceptions of stakeholders about the advantages and disadvantages of multiple systems including any impact on patient safety. METHODS: Hospitals were selected from previous census respondents. A decision matrix was developed to achieve a maximum variation sample, and snowball sampling used to recruit stakeholders of different professional backgrounds. We then used an a priori framework to guide and analyse semi-structured interviews. RESULTS: Ten participants, comprising pharmacists and doctors and a nurse, were interviewed from four hospitals. The findings suggest that use of multiple EP systems was not strategically planned. Three co-existing models of EP systems adoption in hospitals were identified: organisation-led, clinician-led and clinical network-led, which may have contributed to multiple systems use. Although there were some perceived benefits of multiple EP systems, particularly in niche specialities, many disadvantages were described. These included issues related to access, staff training, workflow, work duplication, and system interfacing. Fragmentation of documentation of the patient's journey was a major safety concern. DISCUSSION: The complexity of EP systems' adoption and deficiencies in IT strategic planning may have contributed to multiple EP systems use in the NHS. In the near to mid-term, multiple EP systems may remain in place in many English hospitals, which may create challenges to quality and patient safety.Peer reviewe
Acidosis-Mediated Increase in Ifn-γ-Induced Pd-L1 Expression on Cancer Cells as an Immune Escape Mechanism in Solid Tumors
Immune checkpoint inhibitors have revolutionized cancer therapy, yet the efficacy of these treatments is often limited by the heterogeneous and hypoxic tumor microenvironment (TME) of solid tumors. In the TME, programmed death-ligand 1 (PD-L1) expression on cancer cells is mainly regulated by Interferon-gamma (IFN-γ), which induces T cell exhaustion and enables tumor immune evasion. In this study, we demonstrate that acidosis, a common characteristic of solid tumors, significantly increases IFN-γ-induced PD-L1 expression on aggressive cancer cells, thus promoting immune escape. Using preclinical models, we found that acidosis enhances the genomic expression and phosphorylation of signal transducer and activator of transcription 1 (STAT1), and the translation of STAT1 mRNA by eukaryotic initiation factor 4F (elF4F), resulting in an increased PD-L1 expression. We observed this effect in murine and human anti-PD-L1-responsive tumor cell lines, but not in anti-PD-L1-nonresponsive tumor cell lines. In vivo studies fully validated our in vitro findings and revealed that neutralizing the acidic extracellular tumor pH by sodium bicarbonate treatment suppresses IFN-γ-induced PD-L1 expression and promotes immune cell infiltration in responsive tumors and thus reduces tumor growth. However, this effect was not observed in anti-PD-L1-nonresponsive tumors. In vivo experiments in tumor-bearing IFN-γ−/− mice validated the dependency on immune cell-derived IFN-γ for acidosis-mediated cancer cell PD-L1 induction and tumor immune escape. Thus, acidosis and IFN-γ-induced elevation of PD-L1 expression on cancer cells represent a previously unknown immune escape mechanism that may serve as a novel biomarker for anti-PD-L1/PD-1 treatment response. These findings have important implications for the development of new strategies to enhance the efficacy of immunotherapy in cancer patients
Development of a context model to prioritize drug safety alerts in CPOE systems
Background: Computerized physician order entry systems (CPOE) can reduce the number of medication errors and adverse drug events (ADEs) in healthcare institutions. Unfortunately, they tend to produce a large number of partly irrelevant alerts, in turn leading to alert overload and causing alert fatigue. The objective of this work is to identify factors that can be used to prioritize and present alerts depending on the 'context' of a clinical situation. Methods: We used a combination of literature searches and expert interviews to identify and validate the possible context factors. The internal validation of the context factors was performed by calculating the inter-rater agreement of two researcher's classification of 33 relevant articles. Results: We developed a context model containing 20 factors. We grouped these context factors into three categories: characteristics of the patient or case (e. g. clinical status of the patient); characteristics of the organizational unit or user (e. g. professional experience of the user); and alert characteristics (e. g. severity of the effect). The internal validation resulted in nearly perfect agreement (Cohen's Kappa value of 0.97). Conclusion: To our knowledge, this is the first structured attempt to develop a comprehensive context model for prioritizing drug safety alerts in CPOE systems. The outcome of this work can be used to develop future tailored drug safety alerting in CPOE systems
Product Diversity and Spectrum of Choice in Hospital ePrescribing Systems in England
Background: ePrescribing systems have considerable potential for improving healthcare quality and safety. With growing expectations about the benefits of such systems, there is evidence of widespread plans to implement these systems in hospitals in England where hitherto they have had a low uptake. Given the international drive away from developing home-grown to systems to procuring commercial applications, we aimed to identify available ePrescribing systems in England and to use the findings to develop a taxonomy of the systems offered by suppliers. Methods and Findings: We undertook a scoping review of the published and grey literature, and conducted expert interviews with vendors, healthcare organisations and national ePrescribing experts in order to identify the spectrum of available systems, identify and map their key features, and then iteratively develop and validate a taxonomy of commercial ePrescribing systems available to English hospitals. There is a wide range of available systems including 13 hospital-wide applications and a range of specialty systems. These commercial applications can be grouped into four sub-categories: standalone systems, modules within integrated systems, functionalities spread over several modules, and specialty systems. The findings also reveal that apart from four packaged applications (two of which are specialty systems), all other systems have none or less than two live implementations across England. Conclusions: The wide range of products developed in the last few years by different national and international suppliers, and the low uptake of these products by English hospitals indicate that the English ePrescribing market is still in its infancy. This market is undergoing rapid cycles of change, both with respect to the number of suppliers and their diversity of offerings. Constant renewal of knowledge is needed on the status of this evolving market, encompassing the products development and adoption, to assist implementation decisions and facilitate market maturity
Signals in the Soil: An Introduction to Wireless Underground Communications
In this chapter, wireless underground (UG) communications are introduced. A detailed overview of WUC is given. A comprehensive review of research challenges in WUC is presented. The evolution of underground wireless is also discussed. Moreover, different component of UG communications is wireless. The WUC system architecture is explained with a detailed discussion of the anatomy of an underground mote. The examples of UG wireless communication systems are explored. Furthermore, the differences of UG wireless and over-the-air wireless are debated. Different types of wireless underground channel (e.g., In-Soil, Soil-to-Air, and Air-to-Soil) are reported as well
Evolution of Drilling Dynamics Measurement Systems
Abstract
Continuous development of drilling technology has enabled the oil and gas industry to drill deeper and more complex well paths. Drilling dynamics measurements have been the dominant contributor to rate of penetration maximization, overall drilling optimization and downhole assembly reliability assurance for more than three decades.
A consequence of today's complex downhole assemblies and well paths are higher downhole forces and vibrations. These conditions require more quality drilling dynamics information than before for safe and efficient drilling. Driven by this demand, new developments in downhole and surface equipment have made available larger amounts of drilling dynamics data with higher sample rates. In parallel, development of reliable high-speed telemetry allows the high-resolution drilling dynamics data to be utilized on surface to deliver answers while drilling. These developments were made possible due to the recent advent of high-performance downhole-capable electronic technologies, as well as the availability of increased computation power for signal processing at the rig site.
This paper describes improvements in the drilling dynamics measurement systems to overcome the challenges imposed by deeper and more complex wells. Gathering, processing and transmitting drilling dynamics data at high rates introduces challenges due to tighter downhole sensor requirements, the required digital signal processing power, amount of available memory, electronics temperature tolerances and telemetry requirements. Optimized hardware design, signal processing and enhanced telemetry sequences and methods are answers to these challenges, to ensure the adequate performance of drilling dynamics measurement systems. These improvements allow a fast response to new drilling conditions, the adjustment of drilling parameters to changes in formation, and a rapid evaluation of drilling performance. This enables field personnel to make decisions focused on drilling optimization, and these case histories are added to advance drilling optimization best practices.
The drilling dynamics measurement system described in this paper has been successfully run in challenging fields in the North Sea and Middle East. Compared with offset runs, the system has significantly increased data quality and sample rate and provided, in addition to industry-standard-measurements, unique measurements for the identification and mitigation of high-frequency torsional oscillations. Examples of the improved capability and operational performance are provided.
This paper also highlights changes necessary to further improve drilling dynamics measurement systems for evolving real-time drilling optimization needs.</jats:p
Underreamer Dynamics
Abstract
In a hole-opening application, cutting forces are applied to the drillstring simultaneously at the bit and the underreamer. Cutting forces at the reamer are known widely in the industry to cause additional vibrations of the drillstring that could harm the bottomhole assembly (BHA). This causes unnecessary downtime at the rigsite and increases costs. Expandable underreamers have very limited design envelopes for the optimization of their cutter layout. Most have only three blades and high-profile angles. Common polycrystalline diamond compact (PDC) bits have five or more blades and generate most of the cutting forces at their inner cutters. Reamers, due to their resulting forces, have significantly different characteristics compared to bits. By using appropriate bit-dynamics simulation software it is possible to explain the reasons for these different bit and reamer characteristics. An in-depth study of the cutting forces enables a better understanding of the mechanics of vibration excitation, especially for underreamers.
Dynamic cutting force models for bits and reamers have been developed based on the results of cutting force analyses. These models contain weight, torque, and residual side force. They were implemented into a highly sophisticated drillstring model using finite-element analysis. Dynamics simulations in time domain of complete drillstrings resulting from the cutting forces at the bit and reamer are shown. Interactions of the pilot bit and reamer coupled by the BHA are also investigated using this model.
A field test was conducted using a hydraulically expandable underreamer. During this test, simultaneous dynamics measurements where taken at the bit and reamer in vertical and directional well sections. The measurements validate the simulation results.</jats:p
Optimal Matching of Bit and Reamer for Increased Reliability of Hole-Opening BHAs
Abstract
Mechanical loads in hole-opening BHAs result in tool failures and generate maintenance costs and non-productive time. This paper presents a method to increase the reliability of hole-opening BHAs by optimally matching the bit and reamer. The weight and torque distribution between the bit and reamer is predicted using a stationary load model. New quality load curves facilitate the evaluation of bit-reamer combinations in a user-friendly way. The model and the load curves are validated on a unique set of field data, enabling determination of the model's accuracy.
The model is based on the mechanical specific energies at the bit and at the reamer. The model assumes the RPM and rate of penetration to be constant, the BHA is rigid in the axial and torsional directions and the lateral movement is blocked. Quality load curves are deduced that depict the load distribution in one plot. The model is validated on a unique data set that includes several high-precision measuring tools placed along the drill string. The unconfined compressive strength over depth that usually is not measured in other runs is available. The data set enables precise determination of the axial forces and torques directly at the bit and at the reamer. The observed mechanical specific energy, drilling efficiency, and aggressiveness of both cutting tools over depth are measured.
The model and the quality curves are used to predict the weight and torque distribution depending on the formation type at the bit and at the reamer. A comparison of the prediction to the measured data shows that the weight distribution is predicted with an error of 2% and the torque distribution is predicted with an error of 10.8%. The model accuracy is determined by introducing uncertain parameters into the model. The load predictions are again compared to the measured data. Using the coarse parameter set, the mean prediction error increases to 13%, which is very good, considering the simplifying assumptions of the model.
The validated model and the new quality curves enable an optimal choice of bit and reamers. The presented approach is fast and user-friendly and perfect for an application in advisory software in the well-planning phase. The increased reliability due to less mechanical overloads leads to reduced maintenance costs and less non-productive time of the reamer BHAs.</jats:p
