1,895 research outputs found
Coherent Control of Trapped Bosons
We investigate the quantum behavior of a mesoscopic two-boson system produced
by number-squeezing ultracold gases of alkali metal atoms. The quantum Poincare
maps of the wavefunctions are affected by chaos in those regions of the phase
space where the classical dynamics produces features that are comparable to
hbar. We also investigate the possibility for quantum control in the dynamics
of excitations in these systems. Controlled excitations are mediated by pulsed
signals that cause Stimulated Raman Adiabatic passage (STIRAP) from the ground
state to a state of higher energy. The dynamics of this transition is affected
by chaos caused by the pulses in certain regions of the phase space. A
transition to chaos can thus provide a method of controlling STIRAP.Comment: 17 figures, Appended a paragraph on section 1 and explained details
behind the hamiltonian on section
Technologies for 3D Heterogeneous Integration
3D-Integration is a promising technology towards higher interconnect
densities and shorter wiring lengths between multiple chip stacks, thus
achieving a very high performance level combined with low power consumption.
This technology also offers the possibility to build up systems with high
complexity just by combining devices of different technologies. For ultra thin
silicon is the base of this integration technology, the fundamental processing
steps will be described, as well as appropriate handling concepts. Three main
concepts for 3D integration have been developed at IZM. The approach with the
greatest flexibility called Inter Chip Via - Solid Liquid Interdiffusion
(ICV-SLID) is introduced. This is a chip-to-wafer stacking technology which
combines the advantages of the Inter Chip Via (ICV) process and the
solid-liquid-interdiffusion technique (SLID) of copper and tin. The fully
modular ICV-SLID concept allows the formation of multiple device stacks. A test
chip was designed and the total process sequence of the ICV-SLID technology for
the realization of a three-layer chip-to-wafer stack was demonstrated. The
proposed wafer-level 3D integration concept has the potential for low cost
fabrication of multi-layer high-performance 3D-SoCs and is well suited as a
replacement for embedded technologies based on monolithic integration. To
address yield issues a wafer-level chip-scale handling is presented as well, to
select known-good dies and work on them with wafer-level process sequences
before joining them to integrated stacks.Comment: Submitted on behalf of EDA Publishing Association
(http://irevues.inist.fr/handle/2042/16838
Critical phenomena and thermodynamic geometry of charged Gauss-Bonnet AdS black holes
In this paper, we study the phase structure and equilibrium state space
geometry of charged topological Gauss-Bonnet black holes in -dimensional
anti-de Sitter spacetime. Several critical points are obtained in the canonical
ensemble, and the critical phenomena and critical exponents near them are
examined. We find that the phase structures and critical phenomena drastically
depend on the cosmological constant and dimensionality . The
result also shows that there exists an analogy between the black hole and the
van der Waals liquid gas system. Moreover, we explore the phase transition and
possible property of the microstructure using the state space geometry. It is
found that the Ruppeiner curvature diverges exactly at the points where the
heat capacity at constant charge of the black hole diverges. This black hole is
also found to be a multiple system, i.e., it is similar to the ideal gas of
fermions in some range of the parameters, while to the ideal gas of bosons in
another range.Comment: 17 pages, 8 figures, 3 table
Engineering many-body quantum dynamics by disorder
Going beyond the currently investigated regimes in experiments on quantum
transport of ultracold atoms in disordered potentials, we predict a crossover
between regular and quantum-chaotic dynamics when varying the strength of
disorder. Our spectral approach is based on the Bose-Hubbard model describing
interacting atoms in deep random potentials. The predicted crossover from
localized to diffusive dynamics depends on the simultaneous presence of
interactions and disorder, and can be verified in the laboratory by monitoring
the evolution of typical experimental initial states.Comment: 4 pages, 4 figures (improved version), to be published in PR
Occurrence of normal and anomalous diffusion in polygonal billiard channels
From extensive numerical simulations, we find that periodic polygonal
billiard channels with angles which are irrational multiples of pi generically
exhibit normal diffusion (linear growth of the mean squared displacement) when
they have a finite horizon, i.e. when no particle can travel arbitrarily far
without colliding. For the infinite horizon case we present numerical tests
showing that the mean squared displacement instead grows asymptotically as t
log t. When the unit cell contains accessible parallel scatterers, however, we
always find anomalous super-diffusion, i.e. power-law growth with an exponent
larger than 1. This behavior cannot be accounted for quantitatively by a simple
continuous-time random walk model. Instead, we argue that anomalous diffusion
correlates with the existence of families of propagating periodic orbits.
Finally we show that when a configuration with parallel scatterers is
approached there is a crossover from normal to anomalous diffusion, with the
diffusion coefficient exhibiting a power-law divergence.Comment: 9 pages, 15 figures. Revised after referee reports: redrawn figures,
additional comments. Some higher quality figures available at
http://www.fis.unam.mx/~dsander
Nonequilibrium transport in density-modulated phases of the second Landau level
We investigate non-equilibrium transport in the reentrant integer quantum
Hall phases of the second Landau level. At high currents, we observe a
transition from the reentrant integer quantum Hall phases to classical
Hall-conduction. Surprisingly, this transition is markedly different for the
hole- and electron sides of each spin-branch. While the hole bubble phases
exhibit a sharp transition to an isotropic compressible phase, the transition
for the electron side occurs via an intermediate phase. This might indicate a
more complex structure of the bubble phases than currently anticipated, or a
breaking of the particle-hole symmetry. Such a symmetry breaking in the second
Landau level might also have consequences for the physics at filling factor
=5/2.Comment: 11 pages Supplemental Material available at
http://link.aps.org/supplemental/10.1103/PhysRevB.91.19541
Distribution and Excretion of TEGDMA in Guinea Pigs and Mice
The monomer triethyleneglycoldimethacrylate (TEGDMA) is used as a diluent in many resin-based dental materials. It was previously shown in vitro that TEGDMA was released into the adjacent biophase from such materials during the first days after placement. In this study, the uptake, distribution, and excretion of 14C-TEGDMA applied via gastric, intradermal, and intravenous administration at dose levels well above those encountered in dental care were examined in vivo in guinea pigs and mice as a test of the hypothesis that TEGDMA reaches cytotoxic levels in mammalian tissues. 14C-TEGDMA was taken up rapidly from the stomach and small intestine after gastric administration in both species and was widely distributed in the body following administration by each route. Most 14C was excreted within one day as 14 CO2. The peak equivalent TEGDMA levels in all mouse and guinea pig tissues examined were at least 1000-fold less than known toxic levels. The study therefore did not support the hypothesis
Radio-Frequency Single-Electron Refrigerator
We propose a cyclic refrigeration principle based on mesoscopic electron
transport. Synchronous sequential tunnelling of electrons in a
Coulomb-blockaded device, a normal metal-superconductor single-electron box,
results in a cooling power of at temperature
over a wide range of cycle frequencies . Electrostatic work, done by the
gate voltage source, removes heat from the Coulomb island with an efficiency of
, where is the superconducting gap. The
performance is not affected significantly by non-idealities, for instance by
offset charges. We propose ways of characterizing the system and of its
practical implementation.Comment: 5 pages, 4 figures; corrected typos, language improve
Microscopic Derivation of Causal Diffusion Equation using Projection Operator Method
We derive a coarse-grained equation of motion of a number density by applying
the projection operator method to a non-relativistic model. The derived
equation is an integrodifferential equation and contains the memory effect. The
equation is consistent with causality and the sum rule associated with the
number conservation in the low momentum limit, in contrast to usual acausal
diffusion equations given by using the Fick's law. After employing the Markov
approximation, we find that the equation has the similar form to the causal
diffusion equation. Our result suggests that current-current correlations are
not necessarily adequate as the definition of diffusion constants.Comment: 10 pages, 1 figure, Final version published in Phys. Rev.
Lamination And Microstructuring Technology for a Bio-Cell Multiwell array
Microtechnology becomes a versatile tool for biological and biomedical
applications. Microwells have been established long but remained
non-intelligent up to now. Merging new fabrication techniques and handling
concepts with microelectronics enables to realize intelligent microwells
suitable for future improved cancer treatment. The described technology depicts
the basis for the fabrication of a elecronically enhanced microwell. Thin
aluminium sheets are structured by laser micro machining and laminated
successively to obtain registration tolerances of the respective layers of
5..10\^Am. The microwells lasermachined into the laminate are with
50..80\^Am diameter, allowing to hold individual cells within the well.
The individual process steps are described and results on the microstructuring
are given.Comment: Submitted on behalf of EDA Publishing Association
(http://irevues.inist.fr/EDA-Publishing
- …
