68 research outputs found
African Linguistics in Central and Eastern Europe, and in the Nordic Countries
Non peer reviewe
Cyclicity and Connectivity in Nez Perce Relative Clauses
This article studies two aspects of movement in relative clauses, focusing on evidence from Nez Perce. First, I argue that relativization involves cyclic Ā-movement, even in monoclausal relatives: the relative operator moves to Spec, CP via an intermediate position in an Ā outer specifier of TP. The core arguments draw on word order, complementizer choice, and a pattern of case attraction for relative pronouns. Ā cyclicity of this type suggests that the TP sister of relative C constitutes a phase—a result whose implications extend to an ill-understood corner of the English that-trace effect. Second, I argue that Nez Perce relativization provides new evidence for an ambiguity thesis for relative clauses, according to which some but not all relatives are derived by head raising. The argument comes from connectivity and anticonnectivity in morphological case. A crucial role is played by a pattern of inverse case attraction, wherein the head noun surfaces in a case determined internal to the relative clause. These new data complement the range of existing arguments concerning head raising, which draw primarily on connectivity effects at the syntax-semantics interface
Current and emerging developments in subseasonal to decadal prediction
Weather and climate variations of subseasonal to decadal timescales can have enormous social, economic and environmental impacts, making skillful predictions on these timescales a valuable tool for decision makers. As such, there is a growing interest in the scientific, operational and applications communities in developing forecasts to improve our foreknowledge of extreme events. On subseasonal to seasonal (S2S) timescales, these include high-impact meteorological events such as tropical cyclones, extratropical storms, floods, droughts, and heat and cold waves. On seasonal to decadal (S2D) timescales, while the focus remains broadly similar (e.g., on precipitation, surface and upper ocean temperatures and their effects on the probabilities of high-impact meteorological events), understanding the roles of internal and externally-forced variability such as anthropogenic warming in forecasts also becomes important.
The S2S and S2D communities share common scientific and technical challenges. These include forecast initialization and ensemble generation; initialization shock and drift; understanding the onset of model systematic errors; bias correct, calibration and forecast quality assessment; model resolution; atmosphere-ocean coupling; sources and expectations for predictability; and linking research, operational forecasting, and end user needs. In September 2018 a coordinated pair of international conferences, framed by the above challenges, was organized jointly by the World Climate Research Programme (WCRP) and the World Weather Research Prograame (WWRP). These conferences surveyed the state of S2S and S2D prediction, ongoing research, and future needs, providing an ideal basis for synthesizing current and emerging developments in these areas that promise to enhance future operational services. This article provides such a synthesis
The evolution of the Ancient Egyptian stative: diachronic stability despite inflectional change
Coordination, converbs and clause chaining in Coptic Egyptian typology and structural analysis
- …
