683 research outputs found

    Enhanced ozone strongly reduces carbon sink strength of adult beech (Fagus sylvatica) – Resume from the free-air fumigation study at Kranzberg Forest

    Get PDF
    Ground-level ozone (O3) has gained awareness as an agent of climate change. In this respect, key results are comprehended from a unique 8-year free-air O3-fumigation experiment, conducted on adult beech (Fagus sylvatica) at Kranzberg Forest (Germany). A novel canopy O3 exposure methodology was employed that allowed whole-tree assessment in situ under twice-ambient O3 levels. Elevated O3 significantly weakened the C sink strength of the tree–soil system as evidenced by lowered photosynthesis and 44% reduction in whole-stem growth, but increased soil respiration. Associated effects in leaves and roots at the gene, cell and organ level varied from year to year, with drought being a crucial determinant of O3 responsiveness. Regarding adult individuals of a late-successional tree species, empirical proof is provided first time in relation to recent modelling predictions that enhanced ground-level O3 can substantially mitigate the C sequestration of forests in view of climate change

    Thinning of beech forests stocking on shallow calcareous soil maintains soil C and N stocks in the long run

    Get PDF
    Sustainable forest management should avoid disturbance and volatilization of the soil carbon (C) and nitrogen (N) stocks both under present and projected future climate. Earlier studies have shown that thinning of European beech forests induces a strong initial perturbation of the soil C and N cycles in shallow Rendzic Leptosol, which consists of lower soil N retention and strongly enhanced gaseous losses observed over several years. Persistence of these effects could decrease soil organic matter (SOM) levels and associated soil functions such as erosion protection, nutrient retention, and fertility. Therefore, we resampled untreated control and thinned stands a decade after thinning at sites representing both typical present day and projected future climatic conditions for European beech forests. We determined soil organic C and total N stocks, as well as δ13C and δ15N as integrators of changes in soil C and N cycles. Thinning did not alter these parameters at any of the sampled sites, indicating that initial effects on soil C and N cycles constitute short-term perturbations. Consequently, thinning may be considered a sustainable beech forest management strategy with regard to the maintenance of soil organic C and total N stocks both under present and future climat

    Compared to conventional, ecological intensive management promotes beneficial proteolytic soil microbial communities for agro-ecosystem functioning under climate change-induced rain regimes

    Get PDF
    Projected climate change and rainfall variability will affect soil microbial communities, biogeochemical cycling and agriculture. Nitrogen (N) is the most limiting nutrient in agroecosystems and its cycling and availability is highly dependent on microbial driven processes. In agroecosystems, hydrolysis of organic nitrogen (N) is an important step in controlling soil N availability. We analyzed the effect of management (ecological intensive vs. conventional intensive) on N-cycling processes and involved microbial communities under climate change-induced rain regimes. Terrestrial model ecosystems originating from agroecosystems across Europe were subjected to four different rain regimes for 263 days. Using structural equation modelling we identified direct impacts of rain regimes on N-cycling processes, whereas N-related microbial communities were more resistant. In addition to rain regimes, management indirectly affected N-cycling processes via modifications of N-related microbial community composition. Ecological intensive management promoted a beneficial N-related microbial community composition involved in N-cycling processes under climate change-induced rain regimes. Exploratory analyses identified phosphorus-associated litter properties as possible drivers for the observed management effects on N-related microbial community composition. This work provides novel insights into mechanisms controlling agro-ecosystem functioning under climate change

    Ucma/GRP inhibits phosphate-induced vascular smooth muscle cell calcification via SMAD-dependent BMP signalling

    Get PDF
    Vascular calcification (VC) is the process of deposition of calcium phosphate crystals in the blood vessel wall, with a central role for vascular smooth muscle cells (VSMCs). VC is highly prevalent in chronic kidney disease (CKD) patients and thought, in part, to be induced by phosphate imbalance. The molecular mechanisms that regulate VC are not fully known. Here we propose a novel role for the mineralisation regulator Ucma/GRP (Upper zone of growth plate and Cartilage Matrix Associated protein/Gla Rich Protein) in phosphate-induced VSMC calcification. We show that Ucma/GRP is present in calcified atherosclerotic plaques and highly expressed in calcifying VSMCs in vitro. VSMCs from Ucma/GRP(-/-) mice showed increased mineralisation and expression of osteo/chondrogenic markers (BMP-2, Runx2, beta-catenin, p-SMAD1/5/8, ALP, OCN), and decreased expression of mineralisation inhibitor MGP, suggesting that Ucma/GRP is an inhibitor of mineralisation. Using BMP signalling inhibitor noggin and SMAD1/5/8 signalling inhibitor dorsomorphin we showed that Ucma/GRP is involved in inhibiting the BMP-2-SMAD1/5/8 osteo/chondrogenic signalling pathway in VSMCs treated with elevated phosphate concentrations. Additionally, we showed for the first time evidence of a direct interaction between Ucma/GRP and BMP-2. These results demonstrate an important role of Ucma/GRP in regulating osteo/chondrogenic differentiation and phosphate-induced mineralisation of VSMCs.NWO ZonMw [MKMD 40-42600-98-13007]; FCT [SFRH/BPD/70277/2010]info:eu-repo/semantics/publishedVersio

    Methanethiol-dependent dimethylsulfide production in soil environments

    Get PDF
    Dimethylsulfide (DMS) is an environmentally important trace gas with roles in sulfur cycling, signalling to higher organisms and in atmospheric chemistry. DMS is believed to be predominantly produced in marine environments via microbial degradation of the osmolyte dimethylsulfoniopropionate (DMSP). However, significant amounts of DMS are also generated from terrestrial environments, for example, peat bogs can emit ~6 μmol DMS m−2 per day, likely via the methylation of methanethiol (MeSH). A methyltransferase enzyme termed ‘MddA’, which catalyses the methylation of MeSH, generating DMS, in a wide range of bacteria and some cyanobacteria, may mediate this process, as the mddA gene is abundant in terrestrial metagenomes. This is the first study investigating the functionality of MeSH-dependent DMS production (Mdd) in a wide range of aerobic environments. All soils and marine sediment samples tested produced DMS when incubated with MeSH. Cultivation-dependent and cultivation-independent methods were used to assess microbial community changes in response to MeSH addition in a grassland soil where 35.9% of the bacteria were predicted to contain mddA. Bacteria of the genus Methylotenera were enriched in the presence of MeSH. Furthermore, many novel Mdd+ bacterial strains were isolated. Despite the abundance of mddA in the grassland soil, the Mdd pathway may not be a significant source of DMS in this environment as MeSH addition was required to detect DMS at only very low conversion rates

    Semiconductor charge qubit relaxation due to two-phonon processes

    Full text link
    We theoretically study the relaxation of electron orbital states of a double quantum dot system due to two-phonon processes. In particular, we calculate how the relaxation rates depend on the separation distance between the quantum dots, the strength of quantum dot confinement, and the lattice temperature. Enhancement of the rates by specific inter-dot distances and lattice temperatures, and the relative strength of different scattering channels are discussed. Our results show that although at low temperatures (T1T \sim 1 K) two-phonon processes are almost four orders of magnitude weaker compared to one-phonon processes in relaxing electron orbital states, at room temperature they are as important as one-phonon processes.Comment: Submitted to PR

    Interactive regulation of root exudation and rhizosphere denitrification by plant metabolite content and soil properties

    Get PDF
    Aims Root exudates are known to shape microbial activities in the rhizosphere and to be of fundamental importance for plant-soil-microbe-carbon–nitrogen interactions. However, it remains unclear how and to what extent the amount and composition of root exudation affects rhizosphere denitrification. Methods In this study root exudation patterns and rhizosphere denitrification enzyme activity of three different grass species grown on two agricultural soils under two different soil water contents were investigated under controlled conditions. Results We found that root exudation of primary metabolites largely depends on plant species, soil type, soil moisture and root exudation medium. In dependence of soil properties and soil moisture levels, plants largely controlled amount and quality of root exudation. Exudates affected denitrification activity and plant–microbe competition for nitrate. Specifically, exudation of organic acids stimulated denitrifying activity while the sugar lyxose exhibited an inhibitory effect. Conclusion We show that interactive effects of physicochemical soil properties and species-specific effects of plant metabolism on root exudation act as a dominant control of rhizosphere denitrification, thereby explaining more than half of its variance

    Heart Rate Variability and Recurrent Stroke and Myocardial Infarction in Patients With Acute Mild to Moderate Stroke

    Get PDF
    Objectives: In patients with acute ischemic stroke, reduced heart rate variability (HRV) may indicate poor outcome. We tested whether HRV in the acute phase of stroke is associated with higher rates of mortality, recurrent stroke, myocardial infarction (MI) or functional outcome. Materials and Methods: Patients with acute mild to moderate ischemic stroke without known atrial fibrillation were prospectively enrolled to the investigator-initiated Heart and Brain interfaces in Acute Ischemic Stroke (HEBRAS) study (NCT 02142413). HRV parameters were assessed during the in-hospital stay using a 10-min section of each patient's ECG recording at day- and nighttime, calculating time and frequency domain HRV parameters. Frequency of a combined endpoint of recurrent stroke, MI or death of any cause and the respective individual events were assessed 12 months after the index stroke. Patients' functional outcome was measured by the modified Rankin Scale (mRS) at 12 months. Results: We included 308 patients (37% female, median NIHSS = 2 on admission, median age 69 years). Complete follow-up was achieved in 286/308 (93%) patients. At 12 months, 32 (9.5%), 5 (1.7%) and 13 (3.7%) patients had suffered a recurrent stroke, MI or death, respectively. After adjustment for age, sex, stroke severity and vascular risk factors, there was no significant association between HRV and recurrent stroke, MI, death or the combined endpoint. We did not find a significant impact of HRV on a mRS ≥ 2 12 months after the index stroke. Conclusion: HRV did not predict recurrent vascular events in patients with acute mild to moderate ischemic stroke

    Redox states of glutathione and ascorbate in root tips of poplar (Populus tremula×P. alba) depend on phloem transport from the shoot to the roots

    Get PDF
    Glutathione (GSH) and ascorbate (ASC) are important antioxidants that are involved in stress defence and cell proliferation of meristematic root cells. In principle, synthesis of ASC and GSH in the roots as well as ASC and GSH transport from the shoot to the roots by phloem mass flow is possible. However, it is not yet known whether the ASC and/or the GSH level in roots depends on the supply from the shoot. This was analysed by feeding mature leaves with [14C]ASC or [35S]GSH and subsequent detection of the radiolabel in different root fractions. Quantitative dependency of root ASC and GSH on shoot-derived ASC and GSH was investigated with poplar (Populus tremula×P. alba) trees interrupted in phloem transport. [35S]GSH is transported from mature leaves to the root tips, but is withdrawn from the phloem along the entire transport path. When phloem transport was interrupted, the GSH content in root tips halved within 3 d. [14C]ASC is also transported from mature leaves to the root tips but, in contrast to GSH, ASC is not removed from the phloem along the transport path. Accordingly, ASC accumulates in root tips. Interruption of phloem transport disturbed the level and the ASC redox state within the entire root system. Diminished total ASC levels were attributed mainly to a decline of dehydroascorbate (DHA). As the redox state of ASC is of particular significance for root growth and development, it is concluded that phloem transport of ASC may constitute a shoot to root signal to coordinate growth and development at the whole plant level
    corecore