1,284 research outputs found
Critical properties of the double exchange ferromagnet Nd0.4Pb0.4MnO3
Results of a study of dc-magnetization M(T, H), performed on a Nd0.6Pb0.4MnO3
single crystal in the temperature range around T_C (Curie temperature) which
embraces the critical region | epsilon | = |T -T_C |/T_C <= 0.05 are reported.
The magnetic data analyzed in the critical region using the Kouvel-Fisher
method give the values for the T_C =156.47 +/- 0.06 K and the critical
exponents, beta = 0.374 +/- 0.006 (from the temperature dependence of
magnetization), and gamma = 1.329 +/- 0.003 (from the temperature dependence of
initial susceptibility). The critical isotherm M(T_C, H) gives delta = 4.547
+/- 0.1. Thus the scaling law gamma+beta=delta beta is fulfilled. The critical
exponents obey the single scaling-equation of state M(H, epsilon) = epsilon^b
f_+/- (H/epsilon^(beta + gamma)) where, f_+ for T > T_C and f_- for T< T_C. The
exponent values are very close to those expected for the universality class of
3D Heisenberg ferromagnets with short-range interactions.Comment: 19 pages, including 6 figure
Handling and analysis of ices in cryostats and glove boxes in view of cometary samples
Comet nucleus sample return mission and other return missions from planets and satellites need equipment for handling and analysis of icy samples at low temperatures under vacuum or protective gas. Two methods are reported which were developed for analysis of small icy samples and which are modified for larger samples in cometary matter simulation experiments (KOSI). A conventional optical cryostat system was modified to allow for transport of samples at 5 K, ion beam irradiation, and measurement in an off-line optical spectrophotometer. The new system consists of a removable window plug containing nozzles for condensation of water and volatiles onto a cold finger. This plug can be removed in a vacuum system, changed against another plug (e.g., with other windows (IR, VIS, VUV) or other nozzles). While open, the samples can be treated under vacuum with cooling by manipulators (cut, removal, sample taking, irradiation with light, photons, or ions). After bringing the plug back, the samples can be moved to another site of analysis. For handling the 30 cm diameter mineral-ice samples from the KOSI experiments an 80x80x80 cm glove box made out of plexiglass was used. The samples were kept in a liquid nitrogen bath, which was filled from the outside. A stream a dry N2 and evaporating gas from the bath purified the glove box from impurity gases and, in particular, H2O, which otherwise would condense onto the samples
Mechanical and SEM analysis of artificial comet nucleus samples
Since 1987 experiments dealing with comet nucleus phenomena have been carried out in the DFVLR space simulation chambers. The main objective of these experiments is a better understanding of thermal behavior, surface phenomena and especially the gas dust interaction. As a function of different sample compositions and exposure to solar irradiation (xenon-bulbs) crusts of different hardness and thickness were measured. The measuring device consists of a motor driven pressure foot (5 mm diameter), which is pressed into the sample. The applied compressive force is electronically monitored. The microstructure of the crust and dust residuals is investigated by scanning electron microscopy (SEM) techniques. Stress-depth profiles of an unirradiated and an irradiated model comet are given
Modifications of comet materials by the sublimation process: Results from simulation experiments
An active comet like comet Halley loses by sublimation a surface layer of the order of 1 m thickness per perihelion passage. In situ measurements show that water ice is the main constituent which contributes to the gas emission although even more volatile species (CO, NH3, CH4, CO2 etc.) have been identified. Dust particles which were embedded in the ices are carried by the sublimating gases. Measurements of the chemical composition of cometary grains indicate that they are composed of silicates of approximate chondritic composition and refractory carbonaceous material. Comet simulation experiments show that significant modifications of cometary materials occur due to sublimation process in near surface layers which have to be taken into account in order to derive the original state of the material
The quantum origins of skyrmions and half-skyrmions in Cu2OSeO3
The Skyrme-particle, the , was introduced over half a century ago
and used to construct field theories for dense nuclear matter. But with
skyrmions being mathematical objects - special types of topological solitons -
they can emerge in much broader contexts. Recently skyrmions were observed in
helimagnets, forming nanoscale spin-textures that hold promise as information
carriers. Extending over length-scales much larger than the inter-atomic
spacing, these skyrmions behave as large, classical objects, yet deep inside
they are of quantum origin. Penetrating into their microscopic roots requires a
multi-scale approach, spanning the full quantum to classical domain. By
exploiting a natural separation of exchange energy scales, we achieve this for
the first time in the skyrmionic Mott insulator CuOSeO. Atomistic ab
initio calculations reveal that its magnetic building blocks are strongly
fluctuating Cu tetrahedra. These spawn a continuum theory with a skyrmionic
texture that agrees well with reported experiments. It also brings to light a
decay of skyrmions into half-skyrmions in a specific temperature and magnetic
field range. The theoretical multiscale approach explains the strong
renormalization of the local moments and predicts further fingerprints of the
quantum origin of magnetic skyrmions that can be observed in CuOSeO,
like weakly dispersive high-energy excitations associated with the Cu
tetrahedra, a weak antiferromagnetic modulation of the primary ferrimagnetic
order, and a fractionalized skyrmion phase.Comment: 5 pages, 3 figure
Comparison of established and emerging biodosimetry assays
Rapid biodosimetry tools are required to assist with triage in the case of a large-scale radiation incident. Here, we aimed to determine the dose-assessment accuracy of the well-established dicentric chromosome assay (DCA) and cytokinesis-block micronucleus assay (CBMN) in comparison to the emerging γ-H2AX foci and gene expression assays for triage mode biodosimetry and radiation injury assessment. Coded blood samples exposed to 10 X-ray doses (240 kVp, 1 Gy/min) of up to 6.4 Gy were sent to participants for dose estimation. Report times were documented for each laboratory and assay. The mean absolute difference (MAD) of estimated doses relative to the true doses was calculated. We also merged doses into binary dose categories of clinical relevance and examined accuracy, sensitivity and specificity of the assays. Dose estimates were reported by the first laboratories within 0.3-0.4 days of receipt of samples for the γ-H2AX and gene expression assays compared to 2.4 and 4 days for the DCA and CBMN assays, respectively. Irrespective of the assay we found a 2.5-4-fold variation of interlaboratory accuracy per assay and lowest MAD values for the DCA assay (0.16 Gy) followed by CBMN (0.34 Gy), gene expression (0.34 Gy) and γ-H2AX (0.45 Gy) foci assay. Binary categories of dose estimates could be discriminated with equal efficiency for all assays, but at doses ≥1.5 Gy a 10% decrease in efficiency was observed for the foci assay, which was still comparable to the CBMN assay. In conclusion, the DCA has been confirmed as the gold standard biodosimetry method, but in situations where speed and throughput are more important than ultimate accuracy, the emerging rapid molecular assays have the potential to become useful triage tools
Fractalization of Torus Revisited as a Strange Nonchaotic Attractor
Fractalization of torus and its transition to chaos in a quasi-periodically
forced logistic map is re-investigated in relation with a strange nonchaotic
attractor, with the aid of functional equation for the invariant curve.
Existence of fractal torus in an interval in parameter space is confirmed by
the length and the number of extrema of the torus attractor, as well as the
Fourier mode analysis. Mechanisms of the onset of fractal torus and the
transition to chaos are studied in connection with the intermittency.Comment: Latex file ( figures will be sent electronically upon
request):submitted to Phys.Rev. E (1996
Immunoblot analysis of the seroreactivity to recombinant Borrelia burgdorferi sensu lato antigens, including VlsE, in the long-term course of treated patients with Erythema migrans
Objective: We evaluated whether immunoblotting is capable of substantiating the posttreatment clinical assessment of patients with erythema migrans ( EM), the hallmark of early Lyme borreliosis. Methods: In 50 patients, seroreactivity to different antigens of Borrelia burgdorferi sensu lato was analyzed by a recombinant immunoblot test (IB) in consecutive serum samples from a minimum follow-up period of 1 year. Antigens in the IgG test were decorin- binding protein A, internal fragment of p41 (p41i), outer surface protein C (OspC), p39, variable major protein-like sequence expressed (VlsE), p58 and p100; those in the IgM test were p41i, OspC and p39. Immune responses were correlated with clinical and treatment-related parameters. Results: Positive IB results were found in 50% before, in 57% directly after therapy and in 44% by the end of the follow-up for the IgG class, and in 36, 43 and 12% for the IgM class. In acute and convalescence phase sera, VlsE was most immunogenic on IgG testing 60 and 70%), and p41i (46 and 57%) and OspC (40 and 57%) for the IgM class. By the end of the follow-up, only the anti-p41i lgM response was significantly decreased to 24%. Conclusions: No correlation was found between IB results and treatment-related parameters. Thus, immunoblotting does not add to the clinical assessment of EM patients after treatment. Copyright (c) 2008 S. Karger AG, Basel
- …
