36 research outputs found

    Recombinant phospholipase A1 (Ves v 1) from yellow jacket venom for improved diagnosis of hymenoptera venom hypersensitivity.

    No full text
    ABSTRACT:Hymenoptera venoms are known to cause life-threatening IgE-mediated anaphylactic reactions in allergic individuals. Proper diagnosis of hymenoptera venom allergy using venom extracts is severely affected by molecular cross-reactivities. Although non-glycosylated marker allergens would facilitate the identification of the culprit venom, the major allergen phospholipase A1 (Ves v 1) from yellow jacket venom (YJV) remained unavailable so far.Expression of Ves v 1 as wild type and enzymatically inactivated mutant and Ves v 5 in insect cells yielded soluble proteins that were purified via affinity chromatography. Functionality of the recombinant allergens was assessed by enzymatic and biophysical analyses as well as basophil activation tests. Diagnostic relevance was addressed by ELISA-based analyses of sera of YJV-sensitized patients.Both major allergens Ves v 1 and Ves v 5 could be produced in insect cells in secreted soluble form. The recombinant proteins exhibited their particular biochemical and functional characteristics and were capable for activation of human basophils. Assessment of IgE reactivity of sera of YJV-sensitized and double-sensitized patients emphasised the relevance of Ves v 1 in hymenoptera venom allergy. In contrast to the use of singular molecules the combined use of both molecules enabled a reliable assignment of sensitisation to YJV for more than 90% of double-sensitised patients.The recombinant availability of Ves v 1 from yellow jacket venom will contribute to a more detailed understanding of the molecular and allergological mechanisms of insect venoms and may provide a valuable tool for diagnostic and therapeutic approaches in hymenoptera venom allergy

    Recombinant phospholipase A1 (Ves v 1) from yellow jacket venom for improved diagnosis of hymenoptera venom hypersensitivity.

    No full text
    ABSTRACT:Hymenoptera venoms are known to cause life-threatening IgE-mediated anaphylactic reactions in allergic individuals. Proper diagnosis of hymenoptera venom allergy using venom extracts is severely affected by molecular cross-reactivities. Although non-glycosylated marker allergens would facilitate the identification of the culprit venom, the major allergen phospholipase A1 (Ves v 1) from yellow jacket venom (YJV) remained unavailable so far.Expression of Ves v 1 as wild type and enzymatically inactivated mutant and Ves v 5 in insect cells yielded soluble proteins that were purified via affinity chromatography. Functionality of the recombinant allergens was assessed by enzymatic and biophysical analyses as well as basophil activation tests. Diagnostic relevance was addressed by ELISA-based analyses of sera of YJV-sensitized patients.Both major allergens Ves v 1 and Ves v 5 could be produced in insect cells in secreted soluble form. The recombinant proteins exhibited their particular biochemical and functional characteristics and were capable for activation of human basophils. Assessment of IgE reactivity of sera of YJV-sensitized and double-sensitized patients emphasised the relevance of Ves v 1 in hymenoptera venom allergy. In contrast to the use of singular molecules the combined use of both molecules enabled a reliable assignment of sensitisation to YJV for more than 90% of double-sensitised patients.The recombinant availability of Ves v 1 from yellow jacket venom will contribute to a more detailed understanding of the molecular and allergological mechanisms of insect venoms and may provide a valuable tool for diagnostic and therapeutic approaches in hymenoptera venom allergy

    Recombinant phospholipase A1 (Ves v 1) from yellow jacket venom for improved diagnosis of hymenoptera venom hypersensitivity.

    No full text
    ABSTRACT:Hymenoptera venoms are known to cause life-threatening IgE-mediated anaphylactic reactions in allergic individuals. Proper diagnosis of hymenoptera venom allergy using venom extracts is severely affected by molecular cross-reactivities. Although non-glycosylated marker allergens would facilitate the identification of the culprit venom, the major allergen phospholipase A1 (Ves v 1) from yellow jacket venom (YJV) remained unavailable so far.Expression of Ves v 1 as wild type and enzymatically inactivated mutant and Ves v 5 in insect cells yielded soluble proteins that were purified via affinity chromatography. Functionality of the recombinant allergens was assessed by enzymatic and biophysical analyses as well as basophil activation tests. Diagnostic relevance was addressed by ELISA-based analyses of sera of YJV-sensitized patients.Both major allergens Ves v 1 and Ves v 5 could be produced in insect cells in secreted soluble form. The recombinant proteins exhibited their particular biochemical and functional characteristics and were capable for activation of human basophils. Assessment of IgE reactivity of sera of YJV-sensitized and double-sensitized patients emphasised the relevance of Ves v 1 in hymenoptera venom allergy. In contrast to the use of singular molecules the combined use of both molecules enabled a reliable assignment of sensitisation to YJV for more than 90% of double-sensitised patients.The recombinant availability of Ves v 1 from yellow jacket venom will contribute to a more detailed understanding of the molecular and allergological mechanisms of insect venoms and may provide a valuable tool for diagnostic and therapeutic approaches in hymenoptera venom allergy

    Dissecting cross-reactivity in hymenoptera venom allergy by circumvention of alpha-1,3-core fucosylation.

    No full text
    Hymenoptera venom allergy is known to cause life-threatening and sometimes fatal IgE-mediated anaphylactic reactions in allergic individuals. About 30-50% of patients with insect venom allergy have IgE antibodies that react with both honeybee and yellow jacket venom. Apart from true double sensitisation, IgE against cross-reactive carbohydrate determinants (CCD) are the most frequent cause of multiple reactivities severely hampering the diagnosis and design of therapeutic strategies by clinically irrelevant test results. In this study we addressed allergenic cross-reactivity using a recombinant approach by employing cell lines with variant capacities of alpha-1,3-core fucosylation. The venom hyaluronidases, supposed major allergens implicated in cross-reactivity phenomena, from honeybee (Api m 2) and yellow jacket (Ves v 2a and its putative isoform Ves v 2b) as well as the human alpha-2HS-glycoprotein as control, were produced in different insect cell lines. In stark contrast to production in Trichoplusia ni (HighFive) cells, alpha-1,3-core fucosylation was absent or immunologically negligible after production in Spodoptera frugiperda (Sf9) cells. Consistently, co-expression of honeybee alpha-1,3-fucosyltransferase in Sf9 cells resulted in the reconstitution of CCD reactivity. Re-evaluation of differentially fucosylated hyaluronidases by screening of individual venom-sensitised sera emphasised the allergenic relevance of Api m 2 beyond its carbohydrate epitopes. In contrast, the vespid hyaluronidases, for which a predominance of Ves v 2b could be shown, exhibited pronounced and primary carbohydrate reactivity rendering their relevance in the context of allergy questionable. These findings show that the use of recombinant molecules devoid of CCDs represents a novel strategy with major implications for diagnostic and therapeutic approaches

    Recombinant phospholipase A1 (Ves v 1) from yellow jacket venom for improved diagnosis of hymenoptera venom hypersensitivity.

    No full text
    ABSTRACT:Hymenoptera venoms are known to cause life-threatening IgE-mediated anaphylactic reactions in allergic individuals. Proper diagnosis of hymenoptera venom allergy using venom extracts is severely affected by molecular cross-reactivities. Although non-glycosylated marker allergens would facilitate the identification of the culprit venom, the major allergen phospholipase A1 (Ves v 1) from yellow jacket venom (YJV) remained unavailable so far.Expression of Ves v 1 as wild type and enzymatically inactivated mutant and Ves v 5 in insect cells yielded soluble proteins that were purified via affinity chromatography. Functionality of the recombinant allergens was assessed by enzymatic and biophysical analyses as well as basophil activation tests. Diagnostic relevance was addressed by ELISA-based analyses of sera of YJV-sensitized patients.Both major allergens Ves v 1 and Ves v 5 could be produced in insect cells in secreted soluble form. The recombinant proteins exhibited their particular biochemical and functional characteristics and were capable for activation of human basophils. Assessment of IgE reactivity of sera of YJV-sensitized and double-sensitized patients emphasised the relevance of Ves v 1 in hymenoptera venom allergy. In contrast to the use of singular molecules the combined use of both molecules enabled a reliable assignment of sensitisation to YJV for more than 90% of double-sensitised patients.The recombinant availability of Ves v 1 from yellow jacket venom will contribute to a more detailed understanding of the molecular and allergological mechanisms of insect venoms and may provide a valuable tool for diagnostic and therapeutic approaches in hymenoptera venom allergy

    Recombinant phospholipase A1 (Ves v 1) from yellow jacket venom for improved diagnosis of hymenoptera venom hypersensitivity.

    No full text
    ABSTRACT:Hymenoptera venoms are known to cause life-threatening IgE-mediated anaphylactic reactions in allergic individuals. Proper diagnosis of hymenoptera venom allergy using venom extracts is severely affected by molecular cross-reactivities. Although non-glycosylated marker allergens would facilitate the identification of the culprit venom, the major allergen phospholipase A1 (Ves v 1) from yellow jacket venom (YJV) remained unavailable so far.Expression of Ves v 1 as wild type and enzymatically inactivated mutant and Ves v 5 in insect cells yielded soluble proteins that were purified via affinity chromatography. Functionality of the recombinant allergens was assessed by enzymatic and biophysical analyses as well as basophil activation tests. Diagnostic relevance was addressed by ELISA-based analyses of sera of YJV-sensitized patients.Both major allergens Ves v 1 and Ves v 5 could be produced in insect cells in secreted soluble form. The recombinant proteins exhibited their particular biochemical and functional characteristics and were capable for activation of human basophils. Assessment of IgE reactivity of sera of YJV-sensitized and double-sensitized patients emphasised the relevance of Ves v 1 in hymenoptera venom allergy. In contrast to the use of singular molecules the combined use of both molecules enabled a reliable assignment of sensitisation to YJV for more than 90% of double-sensitised patients.The recombinant availability of Ves v 1 from yellow jacket venom will contribute to a more detailed understanding of the molecular and allergological mechanisms of insect venoms and may provide a valuable tool for diagnostic and therapeutic approaches in hymenoptera venom allergy

    Recombinant phospholipase A1 (Ves v 1) from yellow jacket venom for improved diagnosis of hymenoptera venom hypersensitivity.

    No full text
    ABSTRACT:Hymenoptera venoms are known to cause life-threatening IgE-mediated anaphylactic reactions in allergic individuals. Proper diagnosis of hymenoptera venom allergy using venom extracts is severely affected by molecular cross-reactivities. Although non-glycosylated marker allergens would facilitate the identification of the culprit venom, the major allergen phospholipase A1 (Ves v 1) from yellow jacket venom (YJV) remained unavailable so far.Expression of Ves v 1 as wild type and enzymatically inactivated mutant and Ves v 5 in insect cells yielded soluble proteins that were purified via affinity chromatography. Functionality of the recombinant allergens was assessed by enzymatic and biophysical analyses as well as basophil activation tests. Diagnostic relevance was addressed by ELISA-based analyses of sera of YJV-sensitized patients.Both major allergens Ves v 1 and Ves v 5 could be produced in insect cells in secreted soluble form. The recombinant proteins exhibited their particular biochemical and functional characteristics and were capable for activation of human basophils. Assessment of IgE reactivity of sera of YJV-sensitized and double-sensitized patients emphasised the relevance of Ves v 1 in hymenoptera venom allergy. In contrast to the use of singular molecules the combined use of both molecules enabled a reliable assignment of sensitisation to YJV for more than 90% of double-sensitised patients.The recombinant availability of Ves v 1 from yellow jacket venom will contribute to a more detailed understanding of the molecular and allergological mechanisms of insect venoms and may provide a valuable tool for diagnostic and therapeutic approaches in hymenoptera venom allergy

    Recombinant phospholipase A1 (Ves v 1) from yellow jacket venom for improved diagnosis of hymenoptera venom hypersensitivity.

    No full text
    ABSTRACT:Hymenoptera venoms are known to cause life-threatening IgE-mediated anaphylactic reactions in allergic individuals. Proper diagnosis of hymenoptera venom allergy using venom extracts is severely affected by molecular cross-reactivities. Although non-glycosylated marker allergens would facilitate the identification of the culprit venom, the major allergen phospholipase A1 (Ves v 1) from yellow jacket venom (YJV) remained unavailable so far.Expression of Ves v 1 as wild type and enzymatically inactivated mutant and Ves v 5 in insect cells yielded soluble proteins that were purified via affinity chromatography. Functionality of the recombinant allergens was assessed by enzymatic and biophysical analyses as well as basophil activation tests. Diagnostic relevance was addressed by ELISA-based analyses of sera of YJV-sensitized patients.Both major allergens Ves v 1 and Ves v 5 could be produced in insect cells in secreted soluble form. The recombinant proteins exhibited their particular biochemical and functional characteristics and were capable for activation of human basophils. Assessment of IgE reactivity of sera of YJV-sensitized and double-sensitized patients emphasised the relevance of Ves v 1 in hymenoptera venom allergy. In contrast to the use of singular molecules the combined use of both molecules enabled a reliable assignment of sensitisation to YJV for more than 90% of double-sensitised patients.The recombinant availability of Ves v 1 from yellow jacket venom will contribute to a more detailed understanding of the molecular and allergological mechanisms of insect venoms and may provide a valuable tool for diagnostic and therapeutic approaches in hymenoptera venom allergy

    Recombinant phospholipase A1 (Ves v 1) from yellow jacket venom for improved diagnosis of hymenoptera venom hypersensitivity.

    No full text
    ABSTRACT:Hymenoptera venoms are known to cause life-threatening IgE-mediated anaphylactic reactions in allergic individuals. Proper diagnosis of hymenoptera venom allergy using venom extracts is severely affected by molecular cross-reactivities. Although non-glycosylated marker allergens would facilitate the identification of the culprit venom, the major allergen phospholipase A1 (Ves v 1) from yellow jacket venom (YJV) remained unavailable so far.Expression of Ves v 1 as wild type and enzymatically inactivated mutant and Ves v 5 in insect cells yielded soluble proteins that were purified via affinity chromatography. Functionality of the recombinant allergens was assessed by enzymatic and biophysical analyses as well as basophil activation tests. Diagnostic relevance was addressed by ELISA-based analyses of sera of YJV-sensitized patients.Both major allergens Ves v 1 and Ves v 5 could be produced in insect cells in secreted soluble form. The recombinant proteins exhibited their particular biochemical and functional characteristics and were capable for activation of human basophils. Assessment of IgE reactivity of sera of YJV-sensitized and double-sensitized patients emphasised the relevance of Ves v 1 in hymenoptera venom allergy. In contrast to the use of singular molecules the combined use of both molecules enabled a reliable assignment of sensitisation to YJV for more than 90% of double-sensitised patients.The recombinant availability of Ves v 1 from yellow jacket venom will contribute to a more detailed understanding of the molecular and allergological mechanisms of insect venoms and may provide a valuable tool for diagnostic and therapeutic approaches in hymenoptera venom allergy
    corecore