620 research outputs found
Review and assessment of the database and numerical modeling for turbine heat transfer
The objectives of the NASA Hot Section Technology (HOST) Turbine Heat Transfer subproject were to obtain a better understanding of the physics of the aerothermodynamic phenomena and to assess and improve the analytical methods used to predict the flow and heat transfer in high-temperature gas turbines. At the time the HOST project was initiated, an across-the-board improvement in turbine design technology was needed. A building-block approach was utilized and the research ranged from the study of fundamental phenomena and modeling to experiments in simulated real engine environments. Experimental research accounted for approximately 75 percent of the funding while the analytical efforts were approximately 25 percent. A healthy government/industry/university partnership, with industry providing almost half of the research, was created to advance the turbine heat transfer design technology base
Program Notes For Graduate Recital
AN ABSTRACT OF THE RESEARCH PAPER OF
Abigail Simoneau, for the Masters of Music degree in MUSIC PERFORMANCE, presented on April 12, 2013, at Southern Illinois University Carbondale.
TITLE: PROGRAM NOTES FOR GRADUATE RECITAL
MAJOR PROFESSOR: Dr. Douglas Worthen
The objective of this research paper is to provide scholarly program notes to accompany the Graduate Recital of Abigail Simoneau, which took place on April 19, 2013. Program notes for Jean-Daniel Braun’s Suite in e minor (1740), Wolfgang Amadeus Mozart’s Sonata in C major, K. 14 (1764), Frank Martin’s Ballade for Flute and Piano (1939), Sergei Prokofiev’s Sonata in D major, Op. 94 (1942), Luciano Berio’s Sequenza (1958), and Steve Reich’s Vermont Counterpoint (1982) are provided
Multi-scale simulation of the nano-metric cutting process
Molecular dynamics (MD) simulation and the finite element (FE) method are two popular numerical techniques for the simulation of machining processes. The two methods have their own strengths and limitations. MD simulation can cover the phenomena occurring at nano-metric scale but is limited by the computational cost and capacity, whilst the FE method is suitable for modelling meso- to macro-scale machining and for simulating macro-parameters, such as the temperature in a cutting zone, the stress/strain distribution and cutting forces, etc. With the successful application of multi-scale simulations in many research fields, the application of simulation to the machining processes is emerging, particularly in relation to machined surface generation and integrity formation, i.e. the machined surface roughness, residual stress, micro-hardness, microstructure and fatigue. Based on the quasi-continuum (QC) method, the multi-scale simulation of nano-metric cutting has been proposed. Cutting simulations are performed on single-crystal aluminium to investigate the chip formation, generation and propagation of the material dislocation during the cutting process. In addition, the effect of the tool rake angle on the cutting force and internal stress under the workpiece surface is investigated: The cutting force and internal stress in the workpiece material decrease with the increase of the rake angle. Finally, to ease multi-scale modelling and its simulation steps and to increase their speed, a computationally efficient MATLAB-based programme has been developed, which facilitates the geometrical modelling of cutting, the simulation conditions, the implementation of simulation and the analysis of results within a unified integrated virtual-simulation environment
Quality and Safety Aspects of Infant Nutrition
Quality and safety aspects of infant nutrition are of key importance for child health, but oftentimes they do not get much attention by health care professionals whose interest tends to focus on functional benefits of early nutrition. Unbalanced diets and harmful food components induce particularly high risks for untoward effects in infants because of their rapid growth, high nutrient needs, and their typical dependence on only one or few foods during the first months of life. The concepts, standards and practices that relate to infant food quality and safety were discussed at a scientific workshop organized by the Child Health Foundation and the Early Nutrition Academy jointly with the European Society for Paediatric Gastroenterology, Hepatology and Nutrition, and a summary is provided here. The participants reviewed past and current issues on quality and safety, the role of different stakeholders, and recommendations to avert future issues. It was concluded that a high level of quality and safety is currently achieved, but this is no reason for complacency. The food industry carries the primary responsibility for the safety and suitability of their products, including the quality of composition, raw materials and production processes. Introduction of new or modified products should be preceded by a thorough science based review of suitability and safety by an independent authority. Food safety events should be managed on an international basis. Global collaboration of food producers, food-safety authorities, paediatricians and scientists is needed to efficiently exchange information and to best protect public health. Copyright (C) 2012 S. Karger AG, Base
Vessel co-option mediates resistance to anti-angiogenic therapy in liver metastases
The efficacy of angiogenesis inhibitors in cancer is limited by resistance mechanisms that are poorly understood. Notably, instead of through the induction of angiogenesis, tumor vascularization can occur through the nonangiogenic mechanism of vessel co-option. Here we show that vessel co-option is associated with a poor response to the anti-angiogenic agent bevacizumab in patients with colorectal cancer liver metastases. Moreover, we find that vessel co-option is also prevalent in human breast cancer liver metastases, a setting in which results with anti-angiogenic therapy have been disappointing. In preclinical mechanistic studies, we found that cancer cell motility mediated by the actin-related protein 2/3 complex (Arp2/3) is required for vessel co-option in liver metastases in vivo and that, in this setting, combined inhibition of angiogenesis and vessel co-option is more effective than the inhibition of angiogenesis alone. Vessel co-option is therefore a clinically relevant mechanism of resistance to anti-angiogenic therapy and combined inhibition of angiogenesis and vessel co-option might be a warranted therapeutic strategy
Distinct Effects of Two HIV-1 Capsid Assembly Inhibitor Families That Bind the Same Site within the N-Terminal Domain of the Viral CA Protein
The emergence of resistance to existing classes of antiretroviral drugs necessitates finding new HIV-1 targets for drug discovery. The viral capsid (CA) protein represents one such potential new target. CA is sufficient to form mature HIV-1 capsids in vitro, and extensive structure-function and mutational analyses of CA have shown that the proper assembly, morphology, and stability of the mature capsid core are essential for the infectivity of HIV-1 virions. Here we describe the development of an in vitro capsid assembly assay based on the association of CA-NC subunits on immobilized oligonucleotides. This assay was used to screen a compound library, yielding several different families of compounds that inhibited capsid assembly. Optimization of two chemical series, termed the benzodiazepines (BD) and the benzimidazoles (BM), resulted in compounds with potent antiviral activity against wild-type and drug-resistant HIV-1. Nuclear magnetic resonance (NMR) spectroscopic and X-ray crystallographic analyses showed that both series of inhibitors bound to the N-terminal domain of CA. These inhibitors induce the formation of a pocket that overlaps with the binding site for the previously reported CAP inhibitors but is expanded significantly by these new, more potent CA inhibitors. Virus release and electron microscopic (EM) studies showed that the BD compounds prevented virion release, whereas the BM compounds inhibited the formation of the mature capsid. Passage of virus in the presence of the inhibitors selected for resistance mutations that mapped to highly conserved residues surrounding the inhibitor binding pocket, but also to the C-terminal domain of CA. The resistance mutations selected by the two series differed, consistent with differences in their interactions within the pocket, and most also impaired virus replicative capacity. Resistance mutations had two modes of action, either directly impacting inhibitor binding affinity or apparently increasing the overall stability of the viral capsid without affecting inhibitor binding. These studies demonstrate that CA is a viable antiviral target and demonstrate that inhibitors that bind within the same site on CA can have distinct binding modes and mechanisms of action
Luening’s invention in twelve tones: transcription and max patch for performance by the contemporary flutist
The purpose of this project was to provide a transcription and Max patch for Otto Luening’s Invention in Twelve Tones. Composed in 1952, Invention in Twelve Tones was presented at the first public concert of electroacoustic music in the United States at the Museum of Modern Art in New York. Luening’s original work was prerecorded without a score, and he presented the premiere to the audience via audiotape. The transcription and Max patch are used in conjunction for performance of Invention of Twelve Tones. This project serves to make Invention in Twelve Tones accessible for live performance by a trio of flutists on piccolo, C flute, and bass flute. Included in this dissertation is information about Otto Luening, a Max patch to be used in performance, a performance guide to set up the patch, and a printed transcription of Invention in Twelve Tones. Background information for the project was collected primarily through readings on Otto Luening, the history of electroacoustic music, and study of the original manuscript and subsequent recordings
Biomechanical Effects of Mobile Computer Location in a Vehicle Cab
Objective: The objective of this research is to determine the best location to place a conventional mobile computer supported by a commercially available mount in a light truck cab.
Background: U.S. and Canadian electric utility companies are in the process of integrating mobile computers into their fleet vehicle cabs. There are no publications on the effect of mobile computer location in a vehicle cab on biomechanical loading, performance, and subjective assessment. Method: The authors tested four locations of mobile computers in a light truck cab in a laboratory study to determine how location affected muscle activity of the lower back and shoulders; joint angles of the shoulders, elbows, and wrist; user performance; and subjective assessment. A total of 22 participants were tested in this study. Results: Placing the mobile computer closer to the steering wheel reduced low back and shoulder muscle activity. Joint angles of the shoulders, elbows, and wrists were also closer to neutral angle. Biomechanical modeling revealed substantially less spinal compression and trunk muscle force. In general, there were no practical differences in performance between the locations. Subjective assessment indicated that users preferred the mobile computer to be as close as possible to the steering wheel. Conclusion: Locating the mobile computer close to the steering wheel reduces risk of injuries, such as low back pain and shoulder tendonitis. Application: Results from the study can guide electric utility companies in the installation of mobile computers into vehicle cabs. Results may also be generalized to other industries that use trucklike vehicles, such as construction
The short-term effect of high versus moderate protein intake on recovery after strength training in resistance-trained individuals
Background:
Dietary protein intakes up to 2.9 g.kg-1.d-1 and protein consumption before and after resistance training may enhance recovery, resulting in hypertrophy and strength gains. However, it remains unclear whether protein quantity or nutrient timing is central to positive adaptations. This study investigated the effect of total dietary protein content, whilst controlling for protein timing, on recovery in resistance trainees.
Methods:
Fourteen resistance-trained individuals underwent two 10-day isocaloric dietary regimes with a protein content of 1.8 g.kg-1.d-1 (PROMOD) or 2.9 g.kg-1.d-1 (PROHIGH) in a randomised, counterbalanced, crossover design. On days 8-10 (T1-T3), participants undertook resistance exercise under controlled conditions, performing 3 sets of squat, bench press and bent-over rows at 80% 1 repetition maximum until volitional exhaustion. Additionally, participants consumed a 0.4 g.kg-1 whey protein concentrate/isolate mix 30 minutes before and after exercise sessions to standardise protein timing specific to training. Recovery was assessed via daily repetition performance, muscle soreness, bioelectrical impedance phase angle, plasma creatine kinase (CK) and tumor necrosis factor-α (TNF-α).
Results:
No significant differences were reported between conditions for any of the performance repetition count variables (p>0.05). However, within PROMOD only, squat performance total repetition count was significantly lower at T3 (19.7 ± 6.8) compared to T1 (23.0 ± 7.5; p=0.006). Pre and post-exercise CK concentrations significantly increased across test days (p≤0.003), although no differences were reported between conditions. No differences for TNF-α or muscle soreness were reported between dietary conditions. Phase angle was significantly greater at T3 for PROHIGH (8.26 ± 0.82°) compared with PROMOD (8.08 ± 0.80°; p=0.012).
Conclusions:
When energy intake and peri-exercise protein intake was controlled for, a short term PROHIGH diet did not improve markers of muscle damage or soreness in comparison to a PROMOD approach following repeated days of intensive training. Whilst it is therefore likely that protein intakes (1.8g.kg-1.d-1) may be sufficient for resistance-trained individuals, it is noteworthy that both lower body exercise performance and bioelectrical phase angle were maintained with PROHIGH. Longer term interventions are warranted to determine whether PROMOD intakes are sufficient during prolonged training periods or when extensive exercise (e.g. training twice daily) is undertaken
Red-flag symptom clusters in transthyretin familial amyloid polyneuropathy
© 2015 The Authors. Journal of the Peripheral Nervous System published by Wiley Periodicals, Inc. on behalf of Peripheral Nerve Society. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.Transthyretin familial amyloid polyneuropathy (TTR-FAP) is a rare, progressive, life-threatening, hereditary disorder caused by mutations in the transthyretin gene and characterized by extracellular deposition of transthyretin-derived amyloid fibrils in peripheral and autonomic nerves, heart, and other organs. TTR-FAP is frequently diagnosed late because the disease is difficult to recognize due to phenotypic heterogeneity. Based on published literature and expert opinion, symptom clusters suggesting TTR-FAP are reviewed, and practical guidance to facilitate earlier diagnosis is provided. TTR-FAP should be suspected if progressive peripheral sensory-motor neuropathy is observed in combination with one or more of the following: family history of a neuropathy, autonomic dysfunction, cardiac hypertrophy, gastrointestinal problems, inexplicable weight loss, carpal tunnel syndrome, renal impairment, or ocular involvement. If TTR-FAP is suspected, transthyretin genotyping, confirmation of amyloid in tissue biopsy, large- and small-fiber assessment by nerve conduction studies and autonomic system evaluations, and cardiac testing should be performed.info:eu-repo/semantics/publishedVersio
- …
