829 research outputs found
A theoretical and semiemprical correction to the long-range dispersion power law of stretched graphite
In recent years intercalated and pillared graphitic systems have come under
increasing scrutiny because of their potential for modern energy technologies.
While traditional \emph{ab initio} methods such as the LDA give accurate
geometries for graphite they are poorer at predicting physicial properties such
as cohesive energies and elastic constants perpendicular to the layers because
of the strong dependence on long-range dispersion forces. `Stretching' the
layers via pillars or intercalation further highlights these weaknesses. We use
the ideas developed by [J. F. Dobson et al, Phys. Rev. Lett. {\bf 96}, 073201
(2006)] as a starting point to show that the asymptotic dependence
of the cohesive energy on layer spacing in bigraphene is universal to all
graphitic systems with evenly spaced layers. At spacings appropriate to
intercalates, this differs from and begins to dominate the power
law for dispersion that has been widely used previously. The corrected power
law (and a calculated coefficient) is then unsuccesfully employed in the
semiempirical approach of [M. Hasegawa and K. Nishidate, Phys. Rev. B {\bf 70},
205431 (2004)] (HN). A modified, physicially motivated semiempirical method
including some effects allows the HN method to be used
successfully and gives an absolute increase of about to the predicted
cohesive energy, while still maintaining the correct asymptotics
Two-dimensional Navier--Stokes simulation of deformation and break up of liquid patches
The large deformations and break up of circular 2D liquid patches in a high
Reynolds number (Re=1000) gas flow are investigated numerically. The 2D, plane
flow Navier--Stokes equations are directly solved with explicit tracking of the
interface between the two phases and a new algorithm for surface tension. The
numerical method is able to pursue the simulation beyond the breaking or
coalescence of droplets. The simulations are able to unveil the intriguing
details of the non-linear interplay between the deforming droplets and the
vortical structures in the droplet's wake.Comment: 13 pages including 4 postscript figures; Revised version as
resubmitted to PRL. Title has change
Assessing recent trends in high-latitude Southern Hemisphere surface climate
Understanding the causes of recent climatic trends and variability in the high-latitude Southern Hemisphere is hampered by a short instrumental record. Here, we analyse recent atmosphere, surface ocean and sea-ice observations in this region and assess their trends in the context of palaeoclimate records and climate model simulations. Over the 36-year satellite era, significant linear trends in annual mean sea-ice extent, surface temperature and sea-level pressure are superimposed on large interannual to decadal variability. Most observed trends, however, are not unusual when compared with Antarctic palaeoclimate records of the past two centuries. With the exception of the positive trend in the Southern Annular Mode, climate model simulations that include anthropogenic forcing are not compatible with the observed trends. This suggests that natural variability overwhelms the forced response in the observations, but the models may not fully represent this natural variability or may overestimate the magnitude of the forced response.Support was provided by the following organizations: N.J.A: QEII fellowship and Discovery Project awarded by the Australian Research Council (ARC DP110101161 and DP140102059); M.H.E., ARC Laureate Fellowship (FL100100214); V.M.D., Agence Nationale de la Recherche, project ANR-14-CE01-0001 (ASUMA), and logistical support to French Antarctic studies from the Institut Polaire Paul-Emile Victor (IPEV); B.S., PAGES Antarctica 2k and the ESF-PolarClimate HOLOCLIP project; H.G., the Fonds National de la Recherche Scientifique (F.R.S.-FNRS-Belgium), where he is Research Director; P.O.C., research grant ANPCyT PICT2012 2927; R.L.F., NSF grant 1341621; E.J.S., the Leverhulme Trust; S.T.G., NSF grants OCE-1234473 and PLR-1425989; D.P.S., NSF grant 1235231; NCAR is sponsored by the National Science Foundation (NSF); G.R.S., NSF grants AGS-1206120 and AGS-1407360; D.S., the French ANR CEPS project Green Greenland (ANR-10-CEPL-0008); G.J.M., UK Natural Environment Research Council (NERC) through the British Antarctic Survey research programme Polar Science for Planet Earth; A.K.M., US Department of Energy under contract DE-SC0012457; K.R.C., VUW doctoral scholarship; L.M.F., Australian Research Council (FL100100214); D.J.C., NERC grant NE/H014896/1; C.d.L., UPMC doctoral scholarship; A.J.O., EU grant FP7-PEOPLE-2012-IIF 331615; X.C., the French ANR CLIMICE (ANR-08-CEXC-012-01) and the FP7 PAST4FUTURE (243908) projects; J.A.R., Marsden grant VUW1408; I.E., NSF grant OCE-1357078; T.R.V., the Australian Government's Cooperative Research Centres programme, through the ACE CRC
Drag Data for 16-inch-diameter Ram-jet Engine with Double-cone Inlet in Free Flight at Mach Numbers from 0.7 to 1.8
The diastereoselective Meth-Cohn epoxidation of camphor-derived vinyl sulfones
Some camphor-derived vinyl sulfones bearing oxygen functionality at the allylic position have been synthesized and their nucleophilic epoxidation reactions under Meth-Cohn conditions have been explored. The γ-oxygenated camphor-derived vinyl sulfones underwent mildly diastereoselective nucleophilic epoxidation reactions, affording the derived sulfonyloxiranes in up to 5.8:1 dr. The observed diastereoselectivities were sensitive to the reaction conditions employed. In contrast, no stereoselectivity was observed in the nucleophilic epoxidation of the corresponding γ-oxygenated isobornyl vinyl sulfone. A tentative mechanism has been proposed to explain the origins of the diastereoselectivit
Female senior secondary physics students’ engagement in science: a qualitative study of constructive influences
Background: Prompted by fewer females compared to males enrolling in physics and advanced mathematics at both secondary and university levels, our research investigated the views and experiences of female students currently studying upper secondary school physics. We interviewed 18 female students about influences they considered important to their own science education, interest in science, and future science-related aspirations. Our purpose was to identify the experiences that these students most strongly associated with the generation and maintenance of their engagement in science, particularly represented in this research by their enrolment in upper secondary physics.
Results: The research team used a systematic, iterative process to identify the main themes in the transcribed interview data. We identified the influence each girl reported as the strongest (ranked first). We also combined all influences that the participants had nominated, regardless of their ranking, to further examine all factors participants suggested as influential in their sustained engagement in school science (represented by their decision to study upper secondary physics). Systematic analysis of the interview data confirms that the influences on these females’ choices to study physics at upper secondary originate from a combination of their teachers, their school’s science culture, members of their family, the participants themselves and their peers.
Conclusions: The interviews highlighted the idiographic complexities in understanding the wide range of important influences on these students studying physics at upper secondary school and their engagement in science. The unique contribution of this work is giving voice to the participants and reflecting on what these high achieving females have to say about the influential factors in their decisions to pursue science. Supportive teachers and the school science culture play essential roles, and other cultural and/or social factors such as family members and peers are identified as important. References to the culture and expectations of the school, family holidays, and conversations with siblings are support factors that seem to interact and overlap. At the same time, the importance of policy-amenable factors such as competent and caring science teachers, and science-supportive school cultures should be emphasised and encouraged
Identification of Stage-Specific Breast Markers using Quantitative Proteomics
YesMatched healthy and diseased tissues from breast cancer patients were analyzed by quantitative proteomics. By comparing proteomic profiles of fibroadenoma (benign tumors, three patients), DCIS (noninvasive cancer, three patients), and invasive ductal carcinoma (four patients), we identified protein alterations that correlated with breast cancer progression. Three 8-plex iTRAQ experiments generated an average of 826 protein identifications, of which 402 were common. After excluding those originating from blood, 59 proteins were significantly changed in tumor compared with normal tissues, with the majority associated with invasive carcinomas. Bioinformatics analysis identified relationships
between proteins in this subset including roles in redox regulation, lipid transport, protein folding, and proteasomal degradation, with a substantial number increased in expression due to Myc oncogene activation. Three target proteins, cofilin-1 and p23 (increased in invasive carcinoma) and membrane copper amine oxidase 3 (decreased in invasive carcinoma), were subjected to further validation. All three were observed in phenotype-specific breast cancer cell lines, normal (nontransformed) breast cell lines, and primary breast epithelial cells by Western blotting, but only cofilin-1 and p23 were detected by multiple reaction monitoring mass spectrometry analysis. All three proteins were detected by both analytical approaches in matched tissue biopsies emulating the response observed with proteomics analysis. Tissue microarray analysis (361 patients) indicated cofilin-1 staining positively correlating with tumor grade and p23 staining with ER positive status; both therefore merit further investigation as potential biomarkers.Cyprus Research Promotion Foundation, Yorkshire Cancer Researc
Recommended from our members
Challenges and opportunities for improved understanding of regional climate dynamics
Dynamical processes in the atmosphere and ocean are central to determining the large-scale drivers of regional climate change, yet their predictive understanding is poor. Here, we identify three frontline challenges in climate dynamics where significant progress can be made to inform adaptation: response of storms, blocks and jet streams to external forcing; basin-to-basin and tropical–extratropical teleconnections; and the development of non-linear predictive theory. We highlight opportunities and techniques for making immediate progress in these areas, which critically involve the development of high-resolution coupled model simulations, partial coupling or pacemaker experiments, as well as the development and use of dynamical metrics and exploitation of hierarchies of models
Tropical Connections to Climatic Change in the Extratropical Southern Hemisphere: The Role of Atlantic SST Trends
- …
