493 research outputs found
Comment on: "Revealing common artifacts due to ferromagnetic inclusions in highly oriented pyrolytic graphite", by M. Sepioni, R.R. Nair, I.-Ling Tsai, A.K. Geim and I.V. Grigorieva, EPL 97 (2012) 47001
This comment addresses several issues in the paper by Sepioni et al., where
it is stated that the ferromagnetism in pristine highly oriented pyrolytic
graphite (HOPG) reported by several groups in the previous years is most likely
due to impurity contamination. In this comment, clear arguments are given why
this statement is not justified. Furthermore, it is pointed out, that there are
already measurements using element-sensitive microscopic techniques, e.g. X-ray
Magnetic Circular Dichroism (XMCD) that directly proved the intrinsic origin of
the ferromagnetism in graphite, also in pristine HOPG.Comment: 1, 0 figures, 9 reference
The role of hydrogen in room-temperature ferromagnetism at graphite surfaces
We present a x-ray dichroism study of graphite surfaces that addresses the
origin and magnitude of ferromagnetism in metal-free carbon. We find that, in
addition to carbon states, also hydrogen-mediated electronic states
exhibit a net spin polarization with significant magnetic remanence at room
temperature. The observed magnetism is restricted to the top 10 nm of
the irradiated sample where the actual magnetization reaches emu/g
at room temperature. We prove that the ferromagnetism found in metal-free
untreated graphite is intrinsic and has a similar origin as the one found in
proton bombarded graphite.Comment: 10 pages, 5 figures, 1 table, submitted to New Journal of Physic
-Electron Ferromagnetism in Metal Free Carbon Probed by Soft X-Ray Dichroism
Elemental carbon represents a fundamental building block of matter and the
possibility of ferromagnetic order in carbon attracted widespread attention.
However, the origin of magnetic order in such a light element is only poorly
understood and has puzzled researchers. We present a spectromicroscopy study at
room temperature of proton irradiated metal free carbon using the elemental and
chemical specificity of x-ray magnetic circular dichroism (XMCD). We
demonstrate that the magnetic order in the investigated system originates only
from the carbon -electron system.Comment: 10 pages 3 color figure
Induced Magnetic Ordering by Proton Irradiation in Graphite
We provide evidence that proton irradiation of energy 2.25 MeV on
highly-oriented pyrolytic graphite samples triggers ferro- or ferrimagnetism.
Measurements performed with a superconducting quantum interferometer device
(SQUID) and magnetic force microscopy (MFM) reveal that the magnetic ordering
is stable at room temperature.Comment: 3 Figure
Study of the Negative Magneto-Resistance of Single Proton-Implanted Lithium-Doped ZnO Microwires
The magneto-transport properties of single proton-implanted ZnO and of
Li(7\%)-doped ZnO microwires have been studied. The as-grown microwires were
highly insulating and not magnetic. After proton implantation the Li(7\%) doped
ZnO microwires showed a non monotonous behavior of the negative
magneto-resistance (MR) at temperature above 150 K. This is in contrast to the
monotonous NMR observed below 50 K for proton-implanted ZnO. The observed
difference in the transport properties of the wires is related to the amount of
stable Zn vacancies created at the near surface region by the proton
implantation and Li doping. The magnetic field dependence of the resistance
might be explained by the formation of a magnetic/non magnetic heterostructure
in the wire after proton implantation.Comment: 6 pages with 5 figure
Ferromagnetism in Oriented Graphite Samples
We have studied the magnetization of various, well characterized samples of
highly oriented pyrolitic graphite (HOPG), Kish graphite and natural graphite
to investigate the recently reported ferromagnetic-like signal and its possible
relation to ferromagnetic impurities. The magnetization results obtained for
HOPG samples for applied fields parallel to the graphene layers - to minimize
the diamagnetic background - show no correlation with the magnetic impurity
concentration. Our overall results suggest an intrinsic origin for the
ferromagnetism found in graphite. We discuss possible origins of the
ferromagnetic signal.Comment: 11 figure
A strategy to discover new organizers identifies a putative heart organizer
Organizers are regions of the embryo that can both induce new fates and impart pattern on other regions. So far, surprisingly few organizers have been discovered, considering the number of patterned tissue types generated during development. This may be because their discovery has relied on transplantation and ablation experiments. Here we describe a new approach, using chick embryos, to discover organizers based on a common gene expression signature, and use it to uncover the anterior intestinal portal (AIP) endoderm as a putative heart organizer. We show that the AIP can induce cardiac identity from non-cardiac mesoderm and that it can pattern this by specifying ventricular and suppressing atrial regional identity. We also uncover some of the signals responsible. The method holds promise as a tool to discover other novel organizers acting during development
Recommended from our members
Modelling of a radio frequency plasma bridge neutralizer (RFPBN)
A performance model of a radio frequency plasma bridge neutralizer was developed to calculate the electrical parameters and optimize the neutralizer design. Minimization of power losses and gas consumption, and a maximization of the neutralizer lifetime and the reliability of the system are requirements of all electric propulsion concepts and strongly determine their future application. The requirements of the neutralizer depend on mission profiles
- …
