779 research outputs found
Characterization of a Si(Li) Compton polarimeter for the hard x-ray regime, using synchrotron radiation.
Isotope shift in the dielectronic recombination of three-electron ^{A}Nd^{57+}
Isotope shifts in dielectronic recombination spectra were studied for Li-like
^{A}Nd^{57+} ions with A=142 and A=150. From the displacement of resonance
positions energy shifts \delta E^{142,150}(2s-2p_1/2)= 40.2(3)(6) meV
(stat)(sys)) and \delta E^{142,150}(2s-2p_3/2) = 42.3(12)(20) meV of 2s-2p_j
transitions were deduced. An evaluation of these values within a full QED
treatment yields a change in the mean-square charge radius of ^{142,150}\delta
= -1.36(1)(3) fm^2. The approach is conceptually new and combines the
advantage of a simple atomic structure with high sensitivity to nuclear size.Comment: 10 pages, 3 figures, accepted for publication in Physical Review
Letter
High-resolution measurement of the time-modulated orbital electron capture and of the decay of hydrogen-like Pm ions
The periodic time modulations, found recently in the two-body orbital
electron-capture (EC) decay of both, hydrogen-like Pr and
Pm ions, with periods near to 7s and amplitudes of about 20%,
were re-investigated for the case of Pm by using a 245 MHz
resonator cavity with a much improved sensitivity and time resolution. We
observed that the exponential EC decay is modulated with a period s, in accordance with a modulation period s as obtained
from simultaneous observations with a capacitive pick-up, employed also in the
previous experiments. The modulation amplitudes amount to and
for the 245 MHz resonator and the capacitive pick-up,
respectively. These new results corroborate for both detectors {\it exactly}
our previous findings of modulation periods near to 7s, though with {\it
distinctly smaller} amplitudes. Also the three-body decays have been
analyzed. For a supposed modulation period near to 7s we found an amplitude , compatible with and in agreement with the preliminary
result of our previous experiment. These observations could
point at weak interaction as origin of the observed 7s-modulation of the EC
decay. Furthermore, the data suggest that interference terms occur in the
two-body EC decay, although the neutrinos are not directly observed.Comment: In memoriam of Prof. Paul Kienle, 9 pages, 1 table, 5 figures Phys.
Lett. B (2013) onlin
A 2D position sensitive germanium detector for spectroscopy and polarimetry of high-energetic x-rays
We report on a first prototype 2D μ-strip germanium detector, developed at IKP-Jülich, and its performance test at the European Synchrotron Radiation Facility (ESRF) in Grenoble, France. Beside an accurate determination of the detector response function, the polarization sensitivity has been addressed in this study. For this purpose photon beams at energies of 60 keV and 210 keV have been used
Approaching the Gamow Window with Stored Ions : Direct Measurement of Xe 124 (p,γ) in the ESR Storage Ring
© 2019 American Physical Society. All rights reserved.We report the first measurement of low-energy proton-capture cross sections of Xe124 in a heavy-ion storage ring. Xe12454+ ions of five different beam energies between 5.5 and 8 AMeV were stored to collide with a windowless hydrogen target. The Cs125 reaction products were directly detected. The interaction energies are located on the high energy tail of the Gamow window for hot, explosive scenarios such as supernovae and x-ray binaries. The results serve as an important test of predicted astrophysical reaction rates in this mass range. Good agreement in the prediction of the astrophysically important proton width at low energy is found, with only a 30% difference between measurement and theory. Larger deviations are found above the neutron emission threshold, where also neutron and γ widths significantly impact the cross sections. The newly established experimental method is a very powerful tool to investigate nuclear reactions on rare ion beams at low center-of-mass energies.Peer reviewedFinal Published versio
Relativistic quantum dynamics in strong fields: Photon emission from heavy, few-electron ions
Recent progress in the study of the photon emission from highly-charged heavy
ions is reviewed. These investigations show that high- ions provide a unique
tool for improving the understanding of the electron-electron and
electron-photon interaction in the presence of strong fields. Apart from the
bound-state transitions, which are accurately described in the framework of
Quantum Electrodynamics, much information has been obtained also from the
radiative capture of (quasi-) free electrons by high- ions. Many features in
the observed spectra hereby confirm the inherently relativistic behavior of
even the simplest compound quantum systems in Nature.Comment: Version 18/11/0
Polarization transfer in Rayleigh scattering of hard x-rays
Wereport on the first elastic hard x-ray scattering experiment where the linear polarizationcharacteristics of both the incident and the scattered radiation were observed. Rayleigh scattering wasinvestigated in a relativistic regime by using a high-Z target material, namely gold, and a photon energyof 175keV. Although the incident synchrotron radiation was nearly 100% linearly polarized, at ascattering angle of q = 90we observed a strong depolarization for the scattered photonswith adegree of linear polarization of +0.27% 0.12%only. This finding agreeswith second-orderquantum electrodynamics calculations of Rayleigh scattering, when taking into account a smallpolarization impurity of the incident photon beam which was determined to be close to 98%. Thelatter value was obtained independently from the elastic scattering by analyzing photons that wereCompton-scattered in the target. Moreover, our results indicate that when relying on state-of-the-arttheory, Rayleigh scattering could provide a very accurate method to diagnose polarization impuritiesin a broad region of hard x-ray energies
High-resolution measurement of the time-modulated orbital electron-capture and of the decay of hydrogen-like ions
- …
