457 research outputs found
Symmetries of Electrostatic Interaction between DNA Molecules
We study a model for pair interaction of DNA molecules generated by the
discrete dipole moments of base-pairs and the charges of phosphate groups, and
find noncommutative group of eighth order of symmetries that leave
invariant. We classify the minima using group and employ
numerical methods for finding them. The minima may correspond to several
cholesteric phases, as well as phases formed by cross-like conformations of
molecules at an angle close to , "snowflake phase". The results
depend on the effective charge of the phosphate group which can be modified
by the polycations or the ions of metals. The snowflake phase could exist for
above the threshold . Below there could be several cholesteric
phases. Close to the snowflake phase could change into the cholesteric
one at constant distance between adjacent molecules.Comment: 13 pages, 4 figure
Quantitative principles of cis-translational control by general mRNA sequence features in eukaryotes.
BackgroundGeneral translational cis-elements are present in the mRNAs of all genes and affect the recruitment, assembly, and progress of preinitiation complexes and the ribosome under many physiological states. These elements include mRNA folding, upstream open reading frames, specific nucleotides flanking the initiating AUG codon, protein coding sequence length, and codon usage. The quantitative contributions of these sequence features and how and why they coordinate to control translation rates are not well understood.ResultsHere, we show that these sequence features specify 42-81% of the variance in translation rates in Saccharomyces cerevisiae, Schizosaccharomyces pombe, Arabidopsis thaliana, Mus musculus, and Homo sapiens. We establish that control by RNA secondary structure is chiefly mediated by highly folded 25-60 nucleotide segments within mRNA 5' regions, that changes in tri-nucleotide frequencies between highly and poorly translated 5' regions are correlated between all species, and that control by distinct biochemical processes is extensively correlated as is regulation by a single process acting in different parts of the same mRNA.ConclusionsOur work shows that general features control a much larger fraction of the variance in translation rates than previously realized. We provide a more detailed and accurate understanding of the aspects of RNA structure that directs translation in diverse eukaryotes. In addition, we note that the strongly correlated regulation between and within cis-control features will cause more even densities of translational complexes along each mRNA and therefore more efficient use of the translation machinery by the cell
Electron transport through 8-oxoG: NEGF/DFT study
We present a first-principles study of the conductance of Guanine and 8-Oxoguanine (8-oxoG) attached to Au(111) electrodes. Cellular levels of 8-oxoG have been found in larger concentrations in cancer patients. The current through the structure was calculated using a DFT–NEGF formalism. We have compared flat and pyramidal electrode geometries and show that there is a measurable difference between the I–V characteristics of the pristine molecule and the 8-oxoG. For a flat electrode geometry, 8-oxoG produces a 2.57 (18.3) times increase in current than the corresponding counterpart at 3 V with a bond separation of 1.2 Å (2.4 Å). This can be attributed to molecular orbital energies shifting at the junction. Overall the flat geometry produces larger currents. We have also investigated the sensitivity of the current to the electrode molecule separation. For the flat geometry, the current dropped approximately 80% (97%) for 8-oxoG (pristine Guanine) with the doubling of the electrode separation
Adsorption of mono- and multivalent cat- and anions on DNA molecules
Adsorption of monovalent and multivalent cat- and anions on a deoxyribose
nucleic acid (DNA) molecule from a salt solution is investigated by computer
simulation. The ions are modelled as charged hard spheres, the DNA molecule as
a point charge pattern following the double-helical phosphate strands. The
geometrical shape of the DNA molecules is modelled on different levels ranging
from a simple cylindrical shape to structured models which include the major
and minor grooves between the phosphate strands. The densities of the ions
adsorbed on the phosphate strands, in the major and in the minor grooves are
calculated. First, we find that the adsorption pattern on the DNA surface
depends strongly on its geometrical shape: counterions adsorb preferentially
along the phosphate strands for a cylindrical model shape, but in the minor
groove for a geometrically structured model. Second, we find that an addition
of monovalent salt ions results in an increase of the charge density in the
minor groove while the total charge density of ions adsorbed in the major
groove stays unchanged. The adsorbed ion densities are highly structured along
the minor groove while they are almost smeared along the major groove.
Furthermore, for a fixed amount of added salt, the major groove cationic charge
is independent on the counterion valency. For increasing salt concentration the
major groove is neutralized while the total charge adsorbed in the minor groove
is constant. DNA overcharging is detected for multivalent salt. Simulations for
a larger ion radii, which mimic the effect of the ion hydration, indicate an
increased adsorbtion of cations in the major groove.Comment: 34 pages with 14 figure
Molecular Dynamics and Quantum Mechanics of RNA: Conformational and Chemical Change We Can Believe In
Structure and dynamics are both critical to RNA’s vital functions in biology. Numerous techniques can elucidate the structural dynamics of RNA, but computational approaches based on experimental data arguably hold the promise of providing the most detail. In this Account, we highlight areas wherein molecular dynamics (MD) and quantum mechanical (QM) techniques are applied to RNA, particularly in relation to complementary experimental studies
Microbiological efficacy of early MRSA treatment in cystic fibrosis in a randomised controlled trial
OBJECTIVE: To evaluate microbiological effectiveness, that is, culture negativity of a non-blinded eradication protocol (Rx) compared with observation (Obs) in clinically stable cystic fibrosis participants with newly positive methicillin resistant Staphylococcusaureus (MRSA) cultures.
DESIGN: This non-blinded trial randomised participants ages 4-45 years with first or early (≤2 positive cultures within 3 years) MRSA-positive culture without MRSA-active antibiotics within 4 weeks 1:1 to Rx or Obs. The Rx protocol was: oral trimethoprim-sulfamethoxazole or if sulfa-allergic, minocycline plus oral rifampin; chlorhexidine mouthwash for 2 weeks; nasal mupirocin and chlorhexidine body wipes for 5 days and environmental decontamination for 21 days. The primary end point was MRSA culture status at day 28.
RESULTS: Between 1 April 2011 to September 2014, 45 participants (44% female, mean age 11.5 years) were randomised (24 Rx, 21 Obs). At day 28, 82% (n=18/22) of participants in the Rx arm compared with 26% (n=5/19) in the Obs arm were MRSA-negative. Adjusted for interim monitoring, this difference was 52% (95% CI 23% to 80%, p<0.001). Limiting analyses to participants who were MRSA-positive at the screening visit, 67% (8/12) in the Rx arm and 13% (2/15) in the Obs arm were MRSA-negative at day 28, adjusted difference: 49% (95% CI 22% to 71%, p<0.001). Fifty-four per cent in the Rx arm compared with 10% participants in the Obs arm remained MRSA-negative through day 84. Mild gastrointestinal side effects were higher in the Rx arm.
CONCLUSIONS: This MRSA eradication protocol for newly acquired MRSA demonstrated microbiological efficacy with a large treatment effect.
TRIAL REGISTRATION NUMBER: NCT01349192
Effects of Restrained Sampling Space and Nonplanar Amino Groups on Free-Energy Predictions for RNA with Imino and Sheared Tandem GA Base Pairs Flanked by GC, CG, iGiC or iCiG Base Pairs
Guanine-adenine (GA) base pairs play important roles in determining the structure, dynamics, and stability of RNA. In RNA internal loops, GA base pairs often occur in tandem arrangements and their structure is context and sequence dependent. Calculations reported here test the thermodynamic integration (TI) approach with the amber99 force field by comparing computational predictions of free energy differences with the free energy differences expected on the basis of NMR determined structures of the RNA motifs (5′-GCGGACGC-3′)2, (5′-GCiGGAiCGC-3′)2, (5′-GGCGAGCC-3′)2, and (5′-GGiCGAiGCC-3′)2. Here, iG and iC denote isoguanosine and isocytidine, which have amino and carbonyl groups transposed relative to guanosine and cytidine. The NMR structures show that the GA base pairs adopt either imino (cis Watson−Crick/Watson−Crick A-G) or sheared (trans Hoogsteen/Sugar edge A-G) conformations depending on the identity and orientation of the adjacent base pair. A new mixing function for the TI method is developed that allows alchemical transitions in which atoms can disappear in both the initial and final states. Unrestrained calculations gave ΔG° values 2−4 kcal/mol different from expectations based on NMR data. Restraining the structures with hydrogen bond restraints did not improve the predictions. Agreement with NMR data was improved by 0.7 to 1.5 kcal/mol, however, when structures were restrained with weak positional restraints to sample around the experimentally determined NMR structures. The amber99 force field was modified to partially include pyramidalization effects of the unpaired amino group of guanosine in imino GA base pairs. This provided little or no improvement in comparisons with experiment. The marginal improvement is observed when the structure has potential cross-strand out-of-plane hydrogen bonding with the G amino group. The calculations using positional restraints and a nonplanar amino group reproduce the signs of ΔG° from the experimental results and are, thus, capable of providing useful qualitative insights complementing the NMR experiments. Decomposition of the terms in the calculations reveals that the dominant terms are from electrostatic and interstrand interactions other than hydrogen bonds in the base pairs. The results suggest that a better description of the backbone is key to reproducing the experimental free energy results with computational free energy predictions
Benchmarking AMBER Force Fields for RNA: Comparisons to NMR Spectra for Single-Stranded r(GACC) Are Improved by Revised χ Torsions
Toward a Detailed Description of the Thermally Induced Dynamics of the Core Promoter
Establishing the general and promoter-specific mechanistic features of gene transcription initiation requires improved understanding of the sequence-dependent structural/dynamic features of promoter DNA. Experimental data suggest that a spontaneous dsDNA strand separation at the transcriptional start site is likely to be a requirement for transcription initiation in several promoters. Here, we use Langevin molecular dynamic simulations based on the Peyrard-Bishop-Dauxois nonlinear model of DNA (PBD LMD) to analyze the strand separation (bubble) dynamics of 80-bp-long promoter DNA sequences. We derive three dynamic criteria, bubble probability, bubble lifetime, and average strand separation, to characterize bubble formation at the transcriptional start sites of eight mammalian gene promoters. We observe that the most stable dsDNA openings do not necessarily coincide with the most probable openings and the highest average strand displacement, underscoring the advantages of proper molecular dynamic simulations. The dynamic profiles of the tested mammalian promoters differ significantly in overall profile and bubble probability, but the transcriptional start site is often distinguished by large (longer than 10 bp) and long-lived transient openings in the double helix. In support of these results are our experimental transcription data demonstrating that an artificial bubble-containing DNA template is transcribed bidirectionally by human RNA polymerase alone in the absence of any other transcription factors
Sequence-specific binding of single-stranded RNA: is there a code for recognition?
A code predicting the RNA sequence that will be bound by a certain protein based on its amino acid sequence or its structure would provide a useful tool for the design of RNA binders with desired sequence-specificity. Such de novo designed RNA binders could be of extraordinary use in both medical and basic research applications. Furthermore, a code could help to predict the cellular functions of RNA-binding proteins that have not yet been extensively studied. A comparative analysis of Pumilio homology domains, zinc-containing RNA binders, hnRNP K homology domains and RNA recognition motifs is performed in this review. Based on this, a set of binding rules is proposed that hints towards a code for RNA recognition by these domains. Furthermore, we discuss the intermolecular interactions that are important for RNA binding and summarize their importance in providing affinity and specificity
- …
