863 research outputs found
Surface electromyographic control of a novel phonemic interface for speech synthesis
Many individuals with minimal movement capabilities use AAC to communicate. These individuals require both an interface with which to construct a message (e.g., a grid of letters) and an input modality with which to select targets. This study evaluated the interaction of two such systems: (a) an input modality using surface electromyography (sEMG) of spared facial musculature, and (b) an onscreen interface from which users select phonemic targets. These systems were evaluated in two experiments: (a) participants without motor impairments used the systems during a series of eight training sessions, and (b) one individual who uses AAC used the systems for two sessions. Both the phonemic interface and the electromyographic cursor show promise for future AAC applications.F31 DC014872 - NIDCD NIH HHS; R01 DC002852 - NIDCD NIH HHS; R01 DC007683 - NIDCD NIH HHS; T90 DA032484 - NIDA NIH HHShttps://www.ncbi.nlm.nih.gov/pubmed/?term=Surface+electromyographic+control+of+a+novel+phonemic+interface+for+speech+synthesishttps://www.ncbi.nlm.nih.gov/pubmed/?term=Surface+electromyographic+control+of+a+novel+phonemic+interface+for+speech+synthesisPublished versio
Statistical modeling of ground motion relations for seismic hazard analysis
We introduce a new approach for ground motion relations (GMR) in the
probabilistic seismic hazard analysis (PSHA), being influenced by the extreme
value theory of mathematical statistics. Therein, we understand a GMR as a
random function. We derive mathematically the principle of area-equivalence;
wherein two alternative GMRs have an equivalent influence on the hazard if
these GMRs have equivalent area functions. This includes local biases. An
interpretation of the difference between these GMRs (an actual and a modeled
one) as a random component leads to a general overestimation of residual
variance and hazard. Beside this, we discuss important aspects of classical
approaches and discover discrepancies with the state of the art of stochastics
and statistics (model selection and significance, test of distribution
assumptions, extreme value statistics). We criticize especially the assumption
of logarithmic normally distributed residuals of maxima like the peak ground
acceleration (PGA). The natural distribution of its individual random component
(equivalent to exp(epsilon_0) of Joyner and Boore 1993) is the generalized
extreme value. We show by numerical researches that the actual distribution can
be hidden and a wrong distribution assumption can influence the PSHA negatively
as the negligence of area equivalence does. Finally, we suggest an estimation
concept for GMRs of PSHA with a regression-free variance estimation of the
individual random component. We demonstrate the advantages of event-specific
GMRs by analyzing data sets from the PEER strong motion database and estimate
event-specific GMRs. Therein, the majority of the best models base on an
anisotropic point source approach. The residual variance of logarithmized PGA
is significantly smaller than in previous models. We validate the estimations
for the event with the largest sample by empirical area functions. etc
Coordinated generation of multiple ocular-like cell lineages and fabrication of functional corneal epithelial cell sheets from human iPS cells
We describe a protocol for the generation of a functional and transplantable corneal epithelium derived from human induced pluripotent stem (iPS) cells. When this protocol is followed, a proportion of iPS cells spontaneously form circular colonies, each of which is composed of four concentric zones. Cells in these zones have different morphologies and immunostaining characteristics, resembling neuroectoderm, neural crest, ocular-surface ectoderm, or surface ectoderm. We have named this 2D colony a 'SEAM' (self-formed ectodermal autonomous multizone), and previously demonstrated that cells within the SEAM have the potential to give rise to anlages of different ocular lineages, including retinal cells, lens cells, and ocular-surface ectoderm. To investigate the translational potential of the SEAM, cells within it that resemble ocular-surface epithelia can be isolated by pipetting and FACS sorting into a population of corneal epithelial-like progenitor cells. These can be expanded and differentiated to form an epithelial layer expressing K12 and PAX6, and able to recover function in an animal model of corneal epithelial dysfunction after surgical transplantation. The whole protocol, encompassing human iPS cell preparation, autonomous differentiation, purification, and subsequent differentiation, takes between 100 and 120 d, and is of potential use to researchers with an interest in eye development and/or ocular-surface regeneration. Experience with human iPS cell culture and sorting via FACS will be of benefit for researchers performing this protocol
Solutions For Grand Challenges In Goat And Sheep Production
Goats and sheep are valuable livestock as they produce food, such as meat, milk, fleece, and other products. In addition, goats and sheep are important both for agriculture and biomedical research. Even though these small ruminants provide essential goods, there are major obstacles preventing the efficient, sustainable, and profitable production of goats and sheep. This review is significant because it summarizes major challenges facing goat and sheep production, their negative impacts, and specific science-based solutions to overcome them. These challenge areas are education and training, research, translational research/biotechnology, goat and sheep health, and effective/efficient/sustainable/profitable agribusiness. The solutions include effective teaching of goat and sheep science to next generation and empowering the public, supporting and pursuing innovative and translational research, preventing and treating diseases, facilitating technology transfer, and developing sound agribusinesses. This resource is expected to be helpful to scientists, students, and goat and sheep producers. In addition, the information on the current state of goat and sheep agriculture will help the public better understand and appreciate challenges and opportunities in small ruminant production
Novel interactions of transglutaminase-2 with heparan sulphate proteoglycans: reflection on physiological implications
This mini-review brings together information from publications and recent conference proceedings that have shed light on the biological interaction between transglutaminase-2 and heparan sulphate proteoglycans. We subsequently draw hypothesis of possible implications in the wound healing process. There is a substantial overlap in the action of transglutaminase-2 and the heparan sulphate proteoglycan syndecan-4 in normal and abnormal wound repair. Our latest findings have identified syndecan-4 as a possible binding and signalling partner of fibronectinbound TG2 and support the idea that transglutaminase-2 and syndecan-4 acts in synergy
Optical coherence tomography for bladder cancer - ready as a surrogate for optical biopsy? - Results of a prospective mono-centre study
<p>Abstract</p> <p>Introduction</p> <p>New modalities like Optical Coherence Tomography (OCT) allow non-invasive examination of the internal structure of biological tissue in vivo. The potential benefits and limitations of this new technology for the detection and evaluation of bladder cancer were examined in this study.</p> <p>Materials and methods</p> <p>Between January 2007 and January 2008, 52 patients who underwent transurethral bladder biopsy or TUR-BT for surveillance or due to initial suspicion of urothelial carcinoma of the bladder were enrolled in this study. In total, 166 lesions were suspicious for malignancy according to standard white light cystoscopy. All suspicious lesions were scanned and interpreted during perioperative cystoscopy using OCT. Cold cup biopsies and/or TUR-B was performed for all these lesions. For this study we used an OCT-device (Niris<sup>®</sup>, Imalux<sup>®</sup>, Cleveland, US), that utilizes near-infrared light guided through a flexible fibre-based applicator, which is placed into the bladder via the working channel of the cystoscope. The technology provides high spatial resolution on the order of about 10-20 μm, and a visualization of tissue to a depth of about 2 mm across a lateral span of about 2 mm in width. The device used received market clearance from the FDA and CE approval in Germany. The diagnostic and surgical procedure was videotaped and analyzed afterwards for definitive matching of scanned and biopsied lesion. The primary aim of this study was to determine the level of correlation between OCT interpretation and final histological result.</p> <p>Results</p> <p>Of 166 scanned OCT images, 102 lesions (61.4%) matched to the same site where the biopsy/TUR-BT was taken according to videoanalysis. Only these video-verified lesions were used for further analysis. Of all analyzed lesions 88 were benign (inflammation, edema, hyperplasia etc.) and 14 were malignant (CIS, Ta, T1, T2) as shown by final histo pathology.</p> <p>All 14 malignant lesions were detected correctly by OCT. Furthermore all invasive tumors were staged correctly by OCT regarding tumor growth beyond the lamina propria. There were no false negative lesions detected by OCT. Sensitivity of OCT for detecting the presence of a malignant lesion was 100% and sensitivity for detection of tumor growth beyond the lamina propria was 100% as well. Specificity of OCT for presence of malignancy was 65%, due to the fact that a number of lesions were interpreted as false positive by OCT.</p> <p>Conclusion</p> <p>As a minimally invasive technique, OCT proved to have extremely high sensitivity for detection of malignant lesions as well as estimation of whether a tumor has invaded beyond the lamina propria. However, specificity of OCT within the bladder was impaired (65%), possibly due to a learning curve and/or the relatively low spatial resolution and visualization depth of the OCT technology. Further studies and technical development are needed to establish an adequate surrogate for optical biopsy.</p
LaDIVA: A neurocomputational model providing laryngeal motor control for speech acquisition and production
Many voice disorders are the result of intricate neural and/or biomechanical impairments that are poorly understood. The limited knowledge of their etiological and pathophysiological mechanisms hampers effective clinical management. Behavioral studies have been used concurrently with computational models to better understand typical and pathological laryngeal motor control. Thus far, however, a unified computational framework that quantitatively integrates physiologically relevant models of phonation with the neural control of speech has not been developed. Here, we introduce LaDIVA, a novel neurocomputational model with physiologically based laryngeal motor control. We combined the DIVA model (an established neural network model of speech motor control) with the extended body-cover model (a physics-based vocal fold model). The resulting integrated model, LaDIVA, was validated by comparing its model simulations with behavioral responses to perturbations of auditory vocal fundamental frequency (fo) feedback in adults with typical speech. LaDIVA demonstrated capability to simulate different modes of laryngeal motor control, ranging from short-term (i.e., reflexive) and long-term (i.e., adaptive) auditory feedback paradigms, to generating prosodic contours in speech. Simulations showed that LaDIVA’s laryngeal motor control displays properties of motor equivalence, i.e., LaDIVA could robustly generate compensatory responses to reflexive vocal fo perturbations with varying initial laryngeal muscle activation levels leading to the same output. The model can also generate prosodic contours for studying laryngeal motor control in running speech. LaDIVA can expand the understanding of the physiology of human phonation to enable, for the first time, the investigation of causal effects of neural motor control in the fine structure of the vocal signal.Fil: Weerathunge, Hasini R.. Boston University; Estados UnidosFil: Alzamendi, Gabriel Alejandro. Universidad Nacional de Entre Ríos. Instituto de Investigación y Desarrollo en Bioingeniería y Bioinformática - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación y Desarrollo en Bioingeniería y Bioinformática; ArgentinaFil: Cler, Gabriel J.. University of Washington; Estados UnidosFil: Guenther, Frank H.. Boston University; Estados UnidosFil: Stepp, Cara E.. Boston University; Estados UnidosFil: Zañartu, Matías. Universidad Técnica Federico Santa María; Chil
Development of Shear Modulus Reduction Curves Based on Lotung Downhole Ground Motion Data
In this study, equivalent shear moduli (or shear-wave velocities) and their variations with shearing strain at the Lotung seismic experiment site were back-calculated from recorded downhole array ground motions. Ground motion data for various levels of shaking (peak ground surface accelerations ranging from 0.03g to 0.21g) recorded during seven earthquakes were used in the analyses. Results show that downhole array ground motion data can be used to infer in-situ dynamic soil properties over a wide strain range
The Learning from the Large Scale Lotung Soil-Structure Interaction Experiments
Blind prediction analyses and subsequent correlation studies of a 1/4-scale reinforced concrete containment model constructed at Lotung, Taiwan subject to forced vibration tests and actual earthquakes are evaluated with the objective of validating soil-structure interaction (SSI) analysis methodologies commonly used in U.S. practice. The SSI methods used range from simple soil-spring representation to more complex finite-element methods and sub structuring techniques. Both forced vibration test (FVT) data and actual earthquake induced response data have been obtained for use in validating selected SSI analysis methodologies. Considering that for forced vibration tests only the stiffness and damping characteristics of the foundation are required (complexities of site response, wave scattering and stiffness degradation of soils are absent), the FVT evaluation shows that acceptable frequency predictions can be obtained by most of the methods; however, soil damping as obtained from geophysical methods does not seem to account for the total energy dissipation during SSI. A number of insights have been obtained with respect to the validity of SSI analysis methodologies for earthquake response. Among these are the following: vertical wave propagation assumption in performing SSI is adequate to describe the wave field; equivalent linear analysis of soil response for SSI analysis, such as performed by the SHAKE code, provides acceptable results; a significant but non-permanent degradation of soil modulus occurs during earthquakes; the development of soil stiffness degradation and damping curves as a function of strain, based on geophysical and laboratory tests, requires improvement to reduce variability and uncertainty; backfill stiffness plays an important role in determining impedance functions and possibly input motions; scattering of ground motion due to embedment is an important element in performing SSI analysis; more than the calculational techniques, the differences in response predictions are due to the modeling of the soil-structure system
- …
