1,397 research outputs found
A charge-driven feedback loop in the resonance fluorescence of a single quantum dot
Semiconductor quantum dots can emit antibunched, single photons on demand
with narrow linewidths. However, the observed linewidths are broader than
lifetime measurements predict, due to spin and charge noise in the environment.
This noise randomly shifts the transition energy and destroys coherence and
indistinguishability of the emitted photons. Fortunately, the fluctuations can
be reduced by a stabilization using a suitable feedback loop. In this work we
demonstrate a fast feedback loop that manifests itself in a strong hysteresis
and bistability of the exciton resonance fluorescence signal. Field ionization
of photogenerated quantum dot excitons leads to the formation of a charged
interface layer that drags the emission line along over a frequency range of
more than 30 GHz. This internal charge-driven feedback loop could be used to
reduce the spectral diffusion and stabilize the emission frequency within
milliseconds, presently only limited by the sample structure, but already
faster than nuclear spin feedback
Study of Interplanetary Magnetic Field with Ground State Alignment
We demonstrate a new way of studying interplanetary magnetic field -- Ground
State Alignment (GSA). Instead of sending thousands of space probes, GSA allows
magnetic mapping with any ground telescope facilities equipped with
spectropolarimeter. The polarization of spectral lines that are pumped by the
anisotropic radiation from the Sun is influenced by the magnetic realignment,
which happens for magnetic field (<1G). As a result, the linear polarization
becomes an excellent tracer of the embedded magnetic field. The method is
illustrated by our synthetic observations of the Jupiter's Io and comet Halley.
Polarization at each point was constructed according to the local magnetic
field detected by spacecrafts. Both spatial and temporal variations of
turbulent magnetic field can be traced with this technique as well. The
influence of magnetic field on the polarization of scattered light is discussed
in detail. For remote regions like the IBEX ribbons discovered at the boundary
of interstellar medium, GSA provides a unique diagnostics of magnetic field.Comment: 11 pages, 19 figures, published in Astrophysics and Space Scienc
Generating single photons at GHz modulation-speed using electrically controlled quantum dot microlenses
We report on the generation of single-photon pulse trains at a repetition
rate of up to 1 GHz. We achieve this high speed by modulating the external
voltage applied on an electrically contacted quantum dot microlens, which is
optically excited by a continuous-wave laser. By modulating the
photoluminescence of the quantum dot microlens using a square-wave voltage,
single-photon emission is triggered with a response time as short as 270 ps
being 6.5 times faster than the radiative lifetime of 1.75 ns. This large
reduction in the characteristic emission time is enabled by a rapid capacitive
gating of emission from the quantum dot placed in the intrinsic region of a
p-i-n-junction biased below the onset of electroluminescence. Here, the rising
edge of the applied voltage pulses triggers the emission of single photons from
the optically excited quantum dot. The non-classical nature of the photon pulse
train generated at GHz-speed is proven by intensity autocorrelation
measurements. Our results combine optical excitation with fast electrical
gating and thus show promise for the generation of indistinguishable single
photons at high rates, exceeding the limitations set by the intrinsic radiative
lifetime.Comment: 7 pages, 3 figure
Impact of phonons on dephasing of individual excitons in deterministic quantum dot microlenses
Optimized light-matter coupling in semiconductor nanostructures is a key to
understand their optical properties and can be enabled by advanced fabrication
techniques. Using in-situ electron beam lithography combined with a
low-temperature cathodoluminescence imaging, we deterministically fabricate
microlenses above selected InAs quantum dots (QDs) achieving their efficient
coupling to the external light field. This enables to perform four-wave mixing
micro-spectroscopy of single QD excitons, revealing the exciton population and
coherence dynamics. We infer the temperature dependence of the dephasing in
order to address the impact of phonons on the decoherence of confined excitons.
The loss of the coherence over the first picoseconds is associated with the
emission of a phonon wave packet, also governing the phonon background in
photoluminescence (PL) spectra. Using theory based on the independent boson
model, we consistently explain the initial coherence decay, the zero-phonon
line fraction, and the lineshape of the phonon-assisted PL using realistic
quantum dot geometries
MIPS: The Multiband Imaging Photometer for SIRTF
The Multiband Imaging Photometer for SIRTF (MIPS) is to be designed to reach as closely as possible the fundamental sensitivity and angular resolution limits for SIRTF over the 3 to 700μm spectral region. It will use high performance photoconductive detectors from 3 to 200μm with integrating JFET amplifiers. From 200 to 700μm, the MIPS will use a bolometer cooled by an adiabatic demagnetization refrigerator. Over much of its operating range, the MIPS will make possible observations at and beyond the conventional Rayleigh diffraction limit of angular resolution
Nova Cygni 2001/2 = V2275 Cyg
We present an analysis of low- and medium resolution spectra of the very fast
nova, Nova Cygni 2001/2 (V2275 Cyg) obtained at nine epochs in August,
September and October, 2001. The expansion velocity from hydrogen Balmer lines
is found to be 2100 km/s, although early H-alpha profile showed a weak feature
at -3500 km/s, too. The overall appearance of the optical spectrum is dominated
by broad lines of H, He and N, therefore, the star belongs to the ``He/N''
subclass of novae defined by Williams (1992). Interstellar lines and bands, as
well as BV photometry taken from the literature yielded to a fairly high
reddening of E(B-V)=1.0+/-0.1 mag. The visual light curve was used to deduce
M_V by the maximum magnitude versus rate of decline relationship. The resulting
parameters are: t_0=2452141.4(+0.1)(-0.5), t_2=2.9+/-0.5 days, t_3=7+/-1 days,
M_V=-9.7+/-0.7 mag. Adopting these parameters, the star lies between 3 kpc and
8 kpc from the Sun.Comment: 5 pages, 5 figures, accepted for publication in A&
Exploring Dephasing of a Solid-State Quantum Emitter via Time- and Temperature- Dependent Hong-Ou-Mandel Experiments
We probe the indistinguishability of photons emitted by a semiconductor
quantum dot (QD) via time- and temperature- dependent two-photon interference
(TPI) experiments. An increase in temporal-separation between consecutive
photon emission events, reveals a decrease in TPI visibility on a nanosecond
timescale, theoretically described by a non-Markovian noise process in
agreement with fluctuating charge-traps in the QD's vicinity. Phonon-induced
pure dephasing results in a decrease in TPI visibility from \% at
10\,K to a vanishing visibility at 40\,K. In contrast to Michelson-type
measurements, our experiments provide direct access to the time-dependent
coherence of a quantum emitter at a nanosecond timescale.Comment: 11 pages, 7 figure
Spatial quantitation of drugs in tissues using liquid extraction surface analysis mass spectrometry imaging
Liquid extraction surface analysis mass spectrometry imaging (LESA-MSI) has been shown to be an effective tissue profiling and imaging technique, producing robust and reliable qualitative distribution images of an analyte or analytes in tissue sections. Here, we expand the use of LESA-MSI beyond qualitative analysis to a quantitative analytical technique by employing a mimetic tissue model previously shown to be applicable for MALDI-MSI quantitation. Liver homogenate was used to generate a viable and molecularly relevant control matrix for spiked drug standards which can be frozen, sectioned and subsequently analyzed for the generation of calibration curves to quantify unknown tissue section samples. The effects of extraction solvent composition, tissue thickness and solvent/tissue contact time were explored prior to any quantitative studies in order to optimize the LESA-MSI method across several different chemical entities. The use of a internal standard to normalize regional differences in ionization response across tissue sections was also investigated. Data are presented comparing quantitative results generated by LESA-MSI to LC-MS/MS. Subsequent analysis of adjacent tissue sections using DESI-MSI is also reported
The Sedentary Survey of Extreme High Energy Peaked BL Lacs III. Results from Optical Spectroscopy
The multi-frequency Sedentary Survey is a flux limited, statistically
well-defined sample of highly X-ray dominated BL Lacertae objects (HBLs) which
includes 150 sources. In this paper, the third of the series, we report the
results of a dedicated optical spectroscopy campaign that, together with
results from other independent optical follow up programs, led to the
spectroscopic identification of all sources in the sample. We carried out a
systematic spectroscopic campaign for the observation of all unidentified
objects of the sample using the ESO 3.6m, the KPNO 4m, and the TNG optical
telescopes. We present new identifications and optical spectra for 76 sources,
50 of which are new BL Lac objects, 18 are sources previously referred as BL
Lacs but for which no redshift information was available, and 8 are broad
emission lines AGNs. We find that the multi-frequency selection technique used
to build the survey is highly efficient (about 90%) in selecting BL Lacs
objects. We present positional and spectroscopic information for all confirmed
BL Lac objects. Our data allowed us to determined 36 redshifts out of the 50
new BL Lacs and 5 new redshifts for the previously known objects. The redshift
distribution of the complete sample is presented and compared with that of
other BL Lacs samples. For 26 sources without recognizable absorption features,
we calculated lower limits to the redshift using a method based on simulated
optical spectra with different ratios between jet and galaxy emission. For a
subsample of 38 object with high-quality spectra, we find a correlation between
the optical spectral slope, the 1.4 GHz radio luminosity, and the Ca H&K break
value, indicating that for powerful/beamed sources the optical light is
dominated by the non-thermal emission from the jet.Comment: 23 pages, accepted by A&
Zooming towards the Event Horizon - mm-VLBI today and tomorrow
Global VLBI imaging at millimeter and sub-millimeter wavelength overcomes the
opacity barrier of synchrotron self-absorption in AGN and opens the direct view
into sub-pc scale regions not accessible before. Since AGN variability is more
pronounced at short millimeter wavelength, mm-VLBI can reveal structural
changes in very early stages after outbursts. When combined with observations
at longer wavelength, global 3mm and 1mm VLBI adds very detailed information.
This helps to determine fundamental physical properties at the jet base, and in
the vicinity of super-massive black holes at the center of AGN. Here we present
new results from multi-frequency mm-VLBI imaging of OJ287 during a major
outburst. We also report on a successful 1.3mm VLBI experiment with the APEX
telescope in Chile. This observation sets a new record in angular resolution.
It also opens the path towards future mm-VLBI with ALMA, which aims at the
mapping of the black hole event horizon in nearby galaxies, and the study of
the roots of jets in AGN.Comment: 6 pages, to appear in 11th European VLBI Network Symposium, ed. P.
Charlot et al., Bordeaux (France), October 9-12, 201
- …
