627 research outputs found
High-field recovery of the undistorted triangular lattice in the frustrated metamagnet CuFeO2
Pulsed field magnetization experiments extend the typical metamagnetic
staircase of CuFeO2 up to 58 T to reveal an additional first order phase
transition at high field for both the parallel and perpendicular field
configuration. Virtually complete isotropic behavior is retrieved only above
this transition, indicating the high-field recovery of the undistorted
triangular lattice. A consistent phenomenological rationalization for the field
dependence and metamagnetism crossover of the system is provided, demonstrating
the importance of both spin-phonon coupling and a small field-dependent
easy-axis anisotropy in accurately describing the magnetization process of
CuFeO2.Comment: 4 pages, 4 figure
Mapping the B,T phase diagram of frustrated metamagnet CuFeO2
The magnetic phase diagram of CuFeO2 as a function of applied magnetic field
and temperature is thoroughly explored and expanded, both for magnetic fields
applied parallel and perpendicular to the material's c-axis. Pulsed field
magnetization measurements extend the typical magnetic staircase of CuFeO2 at
various temperatures, demonstrating the persistence of the recently discovered
high field metamagnetic transition up to Tn2 ~ 11 K in both field
configurations. An extension of the previously introduced phenomenological spin
model used to describe the high field magnetization process (Phys. Rev. B, 80,
012406 (2009)) is applied to each of the consecutive low-field commensurate
spin structures, yielding a semi-quantitative simulation and intuitive
description of the entire experimental magnetization process in both relevant
field directions with a single set of parameters.Comment: 14 pages, 11 figures, submitted to Phys. Rev.
Multiple roles for membrane-associated protein trafficking and signaling in gravitropism
Gravitropism is a process that allows plant organs to guide their growth relative to the gravity vector. It requires them to sense changes in their orientation and generate a biochemical signal that they transmit to the tissues that drive organ curvature. Trafficking between the plasma membrane and endosomal compartments is important for all of these phases of the gravitropic response. The sedimentation of starch-filled organelles called amyloplasts plays a key role in sensing reorientation, and vacuolar integrity is required for amyloplast sedimentation in shoots. Other proteins associated with the vesicle trafficking pathway contribute to early gravity signal transduction independently of amyloplast sedimentation in both roots and hypocotyls. Phosphatidylinositol signaling, which starts at the plasma membrane and later affects the localization of auxin efflux facilitators, is a likely second messenger in the signal transduction phase of gravitropism. Finally, membrane-localized auxin influx and efflux facilitators contribute to a differential auxin gradient across the gravistimulated organs, which directs root curvature
On the origin of the A and B electronic Raman scattering peaks in the superconducting state of YBaCuO
The electronic Raman scattering has been investigated in optimally oxygen
doped YBaCuO single crystals as well as in crystals
with non-magnetic, Zn, and magnetic, Ni, impurities. We found that the
intensity of the A peak is impurity independent and their energy to
ratio is almost constant (). Moreover, the
signal at the B channel is completely smeared out when non-magnetic Zn
impurities are present. These results are qualitatively interpreted in terms of
the Zeyher and Greco's theory that relates the electronic Raman scattering in
the A and B channels to \textit{d}-CDW and superconducting order
parameters fluctuations, respectively.Comment: Submited to Phys. Rev. Let
Raman study of carrier-overdoping effects on the gap in high-Tc superconducting cuprates
Raman scattering in the heavily overdoped (Y,Ca)Ba_2Cu_3O_{7-d} (T_c = 65 K)
and Bi_2Sr_2CaCu_2O_{8+d} (T_c = 55 K) crystals has been investigated. For the
both crystals, the electronic pair-breaking peaks in the A_{1g} and B_{1g}
polarizations were largely shifted to the low energies close to a half of
2Delta_0, Delta_0 being the maximum gap. It strongly suggests s-wave mixing
into the d-wave superconducting order parameter and the consequent
manifestation of the Coulomb screening effect in the B_{1g}-channel. Gradual
mixing of s-wave component with overdoping is not due to the change of crystal
structure symmetry but a generic feature in all high-T_c superconducting
cuprates.Comment: 5 pages, 4 figures, to be published in Phys. Rev. B, Rapid
communicaito
Non-equlibrium effects in transport through quantum dots
The role of non-equilibrium effects in the conductance through quantum dots
is investigated. Associated with single-electron tunneling are shake-up
processes and the formation of excitonic-like resonances. They change
qualitatively the low temperature properties of the system. We analyze by
quantum Monte Carlo methods the renormalization of the effective capacitance
and the gate-voltage dependent conductance. Experimental relevance is
discussed.Comment: 10 pages, 8 postscript figure
High resolution 3D imaging of living cells with sub-optical wavelength phonons
Label-free imaging of living cells below the optical diffraction limit poses great challenges for optical microscopy. Biologically relevant structural information remains below the Rayleigh limit and beyond the reach of conventional microscopes. Super-resolution techniques are typically based on the nonlinear and stochastic response of fluorescent labels which can be toxic and interfere with cell function. In this paper we present, for the first time, imaging of live cells using sub-optical wavelength phonons. The axial imaging resolution of our system is determined by the acoustic wavelength (λa = λprobe/2n) and not on the NA of the optics allowing sub-optical wavelength acoustic sectioning of samples using the time of flight. The transverse resolution is currently limited to the optical spot size. The contrast mechanism is significantly determined by the mechanical properties of the cells and requires no additional contrast agent, stain or label to image the cell structure. The ability to breach the optical diffraction limit to image living cells acoustically promises to bring a new suite of imaging technologies to bear in answering exigent questions in cell biology and biomedicine
Gelation of cereal β-glucan at low concentrations
Viscosity of cereal beta-glucan during digestion is considered to be a vital factor for its health effects. Thus, studies on solution properties and gelation are essential for understanding the mechanisms of the beta-glucan functionality. The aim of this study was to investigate the effect of the dissolution temperature on gelation of cereal beta-glucan at low concentrations that are relevant for food products. The rheological properties of oat and barley beta-glucans (OBG and BBG) using three dissolution temperatures (37 degrees C, 57 degrees C and 85 degrees C) at low concentration (1.5% and 1%, respectively) were studied for 7 days. Additionally, the beta-glucans were oxidised with 70 mM H2O2 and 1 mM FeSO4 x 7H(2)O as a catalyst, to evaluate the consequence of oxidative degradation on the gelation properties. The study showed that dissolution at 85 degrees C did not result in gelation. The optimal dissolution temperature for gelation of OBG was 37 degrees C and for gelation of BBG 57 degrees C. At these temperatures, also the oxidised OBG and BBG gelled, although the gel strength was somewhat lower than in the non-oxidised ones. Gelation was suggested to require partial dissolution of beta-glucan, which depended on the molar mass and aggregation state of the beta-glucan molecule. Therefore, the state of beta-glucan in solution and its thermal treatment history may affect its technological and physiological functionality. (C) 2017 Elsevier Ltd. All rights reserved.Peer reviewe
Expression of an osmotin-like protein from Solanum nigrum confers drought tolerance in transgenic soybean.
- …
