583 research outputs found

    Functional characterization of polysaccharide utilization loci in the marine Bacteroidetes 'Gramella forsetii' KT0803

    Get PDF
    Members of the phylum Bacteroidetes are abundant in many marine ecosystems and are known to have a pivotal role in the mineralization of complex organic substrates such as polysaccharides and proteins. We studied the decomposition of the algal glycans laminarin and alginate by 'Gramella forsetii' KT0803, a bacteroidetal isolate from North Sea surface waters. A combined application of isotope labeling, subcellular protein fractionation and quantitative proteomics revealed two large polysaccharide utilization loci (PULs) that were specifically induced, one by alginate and the other by laminarin. These regulons comprised genes of surface-exposed proteins such as oligomer transporters, substrate-binding proteins, carbohydrate-active enzymes and hypothetical proteins. Besides, several glycan-specific TonB-dependent receptors and SusD-like substrate-binding proteins were expressed also in the absence of polysaccharide substrates, suggesting an anticipatory sensing function. Genes for the utilization of the beta-1,3-glucan laminarin were found to be co-regulated with genes for glucose and alpha-1,4-glucan utilization, which was not the case for the non-glucan alginate. Strong syntenies of the PULs of 'G. forsetii' with similar loci in other Bacteroidetes indicate that the specific response mechanisms of 'G. forsetii' to changes in polysaccharide availability likely apply to other Bacteroidetes. Our results can thus contribute to an improved understanding of the ecological niches of marine Bacteroidetes and their roles in the polysaccharide decomposition part of carbon cycling in marine ecosystems

    Melatonin Alters Age-Related Changes in Transcription Factors and Kinase Activation

    Get PDF
    Male mice were fed 40 ppm melatonin for 2 months prior to sacrifice at age 26 months, and compared with both 26 and 4 month-old untreated controls. The nuclear translocation of NF-κB increased with age in both brain and spleen and this was reversed by melatonin only in brain. Another transcription factor, AP-1 was increased with age in the spleen and not in brain and this could be blocked by melatonin treatment. The fraction of the active relative to the inactive form of several enabling kinases was compared. The proportion of activated ERK was elevated with age in brain and spleen but this change was unresponsive to melatonin. A similar age-related increase in glial fibrillary acidic protein (GFAP) was also refractory to melatonin treatment. The cerebral melatonin M1 receptor decreased with age in brain but increased in spleen. The potentially beneficial nature of melatonin for the preservation of brain function with aging was suggested by the finding that an age-related decline in cortical synaptophysin levels was prevented by dietary melatonin

    The Evolution of Bat Vestibular Systems in the Face of Potential Antagonistic Selection Pressures for Flight and Echolocation

    Get PDF
    PMCID: PMC3634842This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

    Growing old, yet staying young: The role of telomeres in bats' exceptional longevity

    Get PDF
    Understanding aging is a grand challenge in biology. Exceptionally long-lived animals have mechanisms that underpin extreme longevity. Telomeres are protective nucleotide repeats on chromosome tips that shorten with cell division, potentially limiting life span. Bats are the longest-lived mammals for their size, but it is unknown whether their telomeres shorten. Using >60 years of cumulative mark-recapture field data, we show that telomeres shorten with age inRhinolophus ferrumequinumandMiniopterus schreibersii, but not in the bat genus with greatest longevity,Myotis. As in humans, telomerase is not expressed inMyotis myotisblood or fibroblasts. Selection tests on telomere maintenance genes show thatATMandSETX, which repair and prevent DNA damage, potentially mediate telomere dynamics inMyotisbats. Twenty-one telomere maintenance genes are differentially expressed inMyotis, of which 14 are enriched for DNA repair, and 5 for alternative telomere-lengthening mechanisms. We demonstrate how telomeres, telomerase, and DNA repair genes have contributed to the evolution of exceptional longevity inMyotisbats, advancing our understanding of healthy aging

    Comparative Transcriptomics Sheds Light on Remodeling of Gene Expression during Diazotrophy in the Thermophilic Methanogen Methanothermococcus thermolithotrophicus

    Get PDF
    Some marine thermophilic methanogens are able to perform energy-consuming nitrogen fixation despite deriving only little energy from hydrogenotrophic methanogenesis. We studied this process in Methanothermococcus thermolithotrophicus DSM 2095, a methanogenic archaeon of the order Methanococcales that contributes to the nitrogen pool in some marine environments. We successfully grew this archaeon under diazotrophic conditions in both batch and fermenter cultures, reaching the highest cell density reported so far. Diazotrophic growth depended strictly on molybdenum and, in contrast to other diazotrophs, was not inhibited by tungstate or vanadium. This suggests an elaborate control of metal uptake and a specific metal recognition system for the insertion into the nitrogenase cofactor. Differential transcriptomics of M. thermolithotrophicus grown under diazotrophic conditions with ammonium-fed cultures as controls revealed upregulation of the nitrogenase machinery, including chaperones, regulators, and molybdate importers, as well as simultaneous upregulation of an ammonium transporter and a putative pathway for nitrate and nitrite utilization. The organism thus employs multiple synergistic strategies for uptake of nitrogen nutrients during the early exponential growth phase without altering transcription levels for genes involved in methanogenesis. As a counterpart, genes coding for transcription and translation processes were downregulated, highlighting the maintenance of an intricate metabolic balance to deal with energy constraints and nutrient limitations imposed by diazotrophy. This switch in the metabolic balance included unexpected processes, such as upregulation of the CRISPR-Cas system, probably caused by drastic changes in transcription levels of putative mobile and virus-like elements

    Multiple Labeling in Electron Microscopy: Its Application in Cardiovascular Research

    Get PDF
    The heart is a muscular pump kept together by a network of extracellular matrix components. An increase in collagens, as in chronic congestive heart failure (CHF), is thought to have a negative effect on cardiac compliance and, thus, on the clinical condition. Conventional electron microscopy allows for the study of cellular and extracellular components and scanning electron microscopy (SEM) can put these structures in three-dimensional perspective. However, in order to study extracellular matrix components in relation to cells, immunoelectron microscopy is superior. We have used this technique in our studies on heart failure. Heart specimens were fixed in 4% paraformaldehyde and 0.1% glutaraldehyde in sodium cacodylate buffer, dehydrated by the method of progressive lowering of temperature and embedded in LR Gold plastic. Immunolabeling could be achieved with different sized gold-conjugated secondary antibodies or protein-A gold conjugates. Depending on the objective, ultra small gold (USG) conjugates or a regular probe size can be used. Labeling efficiency could be increased by bridging antibodies. The double and triple staining procedures were based on single staining methods using one-and two-face labeling. The choice of antibodies and gold conjugates depended on the objectives. Immunoelectron microscopy, using multiple labeling, allowed a detailed study of the organization of the extracellular matrix and its relationship with cardiac myocytes. This may prove to be a useful tool for the study of chronic heart failure

    A Hybrid Approach for Using Programming Exercises in Introductory Physics

    Full text link
    Incorporating computer programming exercises into introductory physics is a delicate task that involves a number of choices that may have an effect on student learning. We present a "hybrid" approach that speaks to a number of common concerns regarding cognitive load which arise when using programming exercises in introductory physics classes where many students are absolute beginner programmers. This "hybrid" approach provides the student with a highly interactive web-based visualization, not unlike a PhET or Physlet interactive, but importantly the student is shown only the subset of the code where the initial conditions are set and the system variables are evolved. We highlight results from a coding activity that resembles the classic game Asteroids. The goals of this activity are to show how a simple 1D code can be modified into a 2D code, and to reinforce ideas about the relationship between force, velocity, and acceleration vectors. Survey results from four semesters of introductory physics classes at the Ohio State University's Marion campus, in which a high percentage of the students are weak or absolute beginner programmers, provide evidence that most students can complete coding tasks without severe difficulty. Other survey results are promising for future work where conceptual learning will be assessed in a direct way using metrics like the Animated Force Concept Inventory (Dancy & Beichner 2006). The exercise highlighted here and others from our group are available for general use at http://compadre.org/PICUPComment: 9 pages, 4 figures, this article supercedes arxiv:1701.0186

    A new, large-bodied omnivorous bat (Noctilionoidea: Mystacinidae) reveals lost morphological and ecological diversity since the Miocene in New Zealand

    Get PDF
    A new genus and species of fossil bat is described from New Zealand's only pre-Pleistocene Cenozoic terrestrial fauna, the early Miocene St Bathans Fauna of Central Otago, South Island. Bayesian total evidence phylogenetic analysis places this new Southern Hemisphere taxon among the burrowing bats (mystacinids) of New Zealand and Australia, although its lower dentition also resembles Africa's endemic sucker-footed bats (myzopodids). As the first new bat genus to be added to New Zealand's fauna in more than 150 years, it provides new insight into the original diversity of chiropterans in Australasia. It also underscores the significant decline in morphological diversity that has taken place in the highly distinctive, semi-terrestrial bat family Mystacinidae since the Miocene. This bat was relatively large, with an estimated body mass of ~40 g, and its dentition suggests it had an omnivorous diet. Its striking dental autapomorphies, including development of a large hypocone, signal a shift of diet compared with other mystacinids, and may provide evidence of an adaptive radiation in feeding strategy in this group of noctilionoid bats
    corecore